

Interim Corrective Action Plan

Washington Metropolitan Area Transit Authority Northern Bus Garage Washington, DC

September 7, 2023 Revised December 1, 2023

Contents

A	cronym	is and Abbreviations	iv
1	Intro	oduction	1
	1.1	Site Description	1
	1.2	Proposed Remedy	1
2	Site	Background	1
	2.1	Geology	2
	2.1.1	Regional Geology	2
	2.1.2	Site Geology	2
	2.2	Hydrogeology	2
	2.3	Groundwater Use	3
	2.4	Site Investigation History	3
	2.5	Proposed Remedy – Excavation and Off-site Disposal	4
3	Inter	rim Corrective Action Plan	5
	3.1	Planning	6
	3.2	Grid Sampling Program	6
	3.3	Targeted Soil Excavation	7
	3.3.1	Dust Control	7
	3.3.2	Traffic Control and Road Maintenance	8
	3.3.3	Concrete Processing and Handling	8
	3.3.4	Free Product and Extent of Impacts in Excavated Soils	8
	3.3.5	Construction Dewatering	8
	3.3.6	Stormwater Management	9
	3.3.7	Management of Investigation-Derived Waste	9
	3.4	Post-Excavation Verification Sampling	0
	3.5	Backfill with Amendment and Restoration	0
	3.6	Vapor Intrusion Mitigation	1
	3.7	Monitoring Well Installation and Sampling Plan	11
	3.7.1	Permitting and Notifications	1
	3.7.2	Well Installation	2
	3.7.3	Well Development	3
	3.7.4	Waste Management	13
	3.7.5	Surveying	3
	3.7.6	Sampling	3
4	Qua	lity Assurance Project Plan	4
	4.1	Data Quality Objectives	4

4	.2	Sampling Quality Controls	14
	4.2.1	Field Documentation	14
	4.2.2	Pield Quality Assurance	14
4	.3	Sampling Procedures, Handling, and Custody	16
	4.3.1	Calibration Procedures	16
	4.3.2	2 Sample Management	16
	4.3.3	3 Sample Identification	16
4	.4	Analytical Quality Controls	17
4	.5	Analytical Procedures	17
4	.6	Data Management	17
4	.7	Data Verification, Validation and Usability	17
4	.8	Assessment and Reporting	18
5	Sch	edule and Monitoring	18
6	Refe	erences	19

Figures

Figure 1	Regional Map
Figure 2	Proposed Excavation Areas and Stockpile Location Plan
Figure 3	Proposed 50-foot Sampling Grid and Notable Site Features Plan
Figure 4	Proposed Monitoring Well Locations in Relation to Bedrock Contours and Site Features

Tables

Table 1Summary of Selected Final Remediation Levels and Detection LimitsTable 2Summary of Protection of Groundwater Soil Screening Levels and Detection Limits

Appendices

Appendix A	District of Columbia Water and Sewer Authority Temporary Discharge Authorization Permit
Appendix B	WMATA – Northern Bus Division Replacement Basis of Design Report, Vapor Management System
Appendix C	Active Vapor Management System Plans
Appendix D	Well Construction Details

Acronyms and Abbreviations

amsl	above mean sea level
Arcadis	Arcadis U.S., Inc.
CAP	Corrective Action Plan
CSM	conceptual site model
CVOC	chlorinated volatile organic compound
DC	District of Columbia
DOEE	District of Columbia Department of Energy and Environment
DQO	data quality objective
DCMR	District of Columbia Municipal Regulations
DCRBCA	District of Columbia Risk-Based Corrective Action
DCWSA	District of Columbia Water and Sewer Authority
DNAPL	dense non-aqueous phase liquid
DRO	diesel range organics
EDD	electronic data deliverable
GRO	gasoline range organics
ICAP	Interim Corrective Action Plan
IDW	investigation-derived waste
PCB	polychlorinated biphenyl
µg/L	micrograms per liter
mg/kg	milligrams per liter
PCB	polychlorinated biphenyls
PID	photoionization detector
PSS	Phase Separation Science
RSL	regional screening level
Site	Northern Bus Garage property located at 4615 14 th Street Northwest, Washington, DC 20011
SVOC	semivolatile organic compound
TPH	total petroleum hydrocarbon
USDA	United States Department of Agriculture
USEPA	United States Environmental Protection Agency
UST	underground storage tank
VOC	volatile organic compound
WMATA	Washington Metropolitan Area Transit Authority

1 Introduction

On behalf of the Washington Metropolitan Area Transit Authority (WMATA), Arcadis U.S., Inc. (Arcadis) has prepared this Interim Corrective Action Plan (ICAP) to address soil impacts at the Northern Bus Garage property located at 4615 14th Street Northwest, Washington, District of Columbia (DC) 20011 (the Site) (Figure 1). STV Incorporated (under contract to Clark Construction) retained Arcadis to prepare this document in response to a DC Department of Energy and Environment (DOEE) Directive dated July 27, 2023 and following discussions with DOEE, STV Incorporated, Clark Construction, and WMATA on September 29, 2023 (DOEE 2023). Additional comments were received from DOEE on October 2, 2023 and are addressed herein.

This ICAP is designed to provide direction for Directive 4: Soil Sampling Requirements during Construction Activities. Additionally, this ICAP provides guidance for the handling of impacted soils and other structures that are encountered during construction activities to reduce the potential exposures of human receptors during that time. Directives 1, 2, 3, and 5, including potential remediation of groundwater impacts will be addressed in a future Corrective Action Plan (CAP) that will be provided separately.

This ICAP serves as a supplement to the previously implemented Soil and Groundwater Management and Monitoring Plan (PSI 2022a).

1.1 Site Description

The Site is located within Square 2811/2815 and Property ID 2811 0802 of the Washington, DC Real Estate Map, and is located in a mixed-use neighborhood surrounded by residential housing and commercial properties. The Site is currently cleared of buildings and vegetation and is in the process of undergoing excavation and mass grading. Previously, the Site was improved with an approximately 270,000-square-foot multi-story building, with the oldest portion of the building constructed circa 1906. The Site has been used for the operation and maintenance of transit vehicles beginning with trolley cars in the early 1900s for Capital Traction Company (Versar 2003). A detailed site history is provided in the Baseline Risk Assessment Report (Arcadis 2023), which was submitted to DOEE in July 2023.

1.2 Proposed Remedy

The proposed remedy for this ICAP is removal and disposal of underground structures including fuel storage tanks and piping, excavation and off-site disposal of impacted soil material, the installation of a vapor mitigation system in proposed buildings, and the installation of seven monitoring/recovery wells at select locations on the Site. Additional details on the remedy are presented in Section 2.5.

2 Site Background

This section summarizes the current environmental conditions and further describes the proposed remedy for the Site.

2.1 Geology

The following sections outline the general geology of the Site and the subsurface conditions that may be encountered during the exploration of the Site.

2.1.1 Regional Geology

The Site is located within the Piedmont Physiographic Province and is mapped as the Laurel Gneiss (granitic gneiss), which grades into the early Paleozoic-aged Wissahickon Formation. The Laurel Gneiss was derived from the Wissahickon Formation rock by hydrothermal alteration. The Wissahickon Formation, as observed in the Washington, DC area, consists of quartz-mica schist, phyllite, and quartzite (PSI 2022a). At lower elevations (eastern and southern portions of the Site), the Site is underlain by unconsolidated valley bottom materials (soil) of the Patuxent Formation containing clay, silt, sand, and gravel, along with weathered/decomposed rock fragments from upslope areas (PSI 2022a).

2.1.2 Site Geology

The United States Department of Agriculture (USDA) 1976 Soil Survey for the District of Columbia and the current USDA Web Soil Survey identify site soils primarily as Urban Land (PSI 2022a). Urban Land is used to designate areas where natural soils have been disturbed by development or are covered by impervious surfaces or structures. The Site is situated at an approximate average elevation of 199 feet above mean sea level (amsl) to the north, with a gradual topographic slope to 177 feet amsl to the southeast (PSI 2022a).

The February 7, 2020, Preliminary Environmental Investigation Report prepared by PSI noted the location of the Site as being an unconformable contact between the Laurel Formation (Lower Cambrian) and sand-dominated lithofacies of the Potomac Formation (Lower Cretaceous). The mapped contact between the two formations approximately bisects the Site from north to south. As mapped, the Potomac Formation underlies the western portion of the Site, and the Laurel Formation underlies the eastern portion of the Site (PSI 2022a).

Subsurface characterization of bedrock at the Site conducted as part of a geotechnical engineering study performed by PSI indicated that the underlying geology of the Site consists of intermediate to mafic igneous rocks, rather than the Laurel Formation or Potomac Formation as mapped by PSI in 2020 (PSI 2022a). Rock cores collected at the Site were classified as massive to foliated metadiorite. The metadiorite is predominantly intermediate in composition, although variation is observed across the Site and in some areas the bedrock is more mafic, bordering on a gabbroic composition. In select areas of the Site, the metadiorite is foliated enough to be considered a gneiss. The Laurel Formation is intruded throughout by igneous rocks, many of which are known collectively as the Georgetown Intrusive Suite (Early Ordovician) (PSI 2022a). Based on mineralogical assemblages, country rock xenoliths, and cross-cutting relationships of the rock samples recovered from the geotechnical investigation, bedrock at the Site is likely associated with the Georgetown Intrusive Suite, which intruded into the Laurel Formation (PSI 2022a).

2.2 Hydrogeology

The Site appears to be underlain by an unconfined aquifer system with two units: overburden and an underlying bedrock. Groundwater generally flows from the northwest to southeast, in the direction of decreasing topographic surface. Based on field observations, the approximate depth to groundwater is between 13 and 15 feet below the

ground surface. Bedrock at the Site is overlain by unconsolidated material, which consists of a combination of weathered regolith and more geologically recent soil deposits. The overburden strata generally consist of coarse to fine-grained soils, which may have sufficient permeability for groundwater in bedrock to communicate with the overburden zone in an unconfined manner. It was observed that adjacent boreholes, where one was drilled into bedrock and the other terminated in soil, generally had similar groundwater elevations, indicating the underlying bedrock aquifer is unconfined. Spatially dispersed layers of low-permeability clay likely allow perched zone conditions to develop and may, in some locations, result in semi-confined aquifer conditions (PSI 2022a).

Although in situ hydraulic conductivities of the overburden and bedrock were not measured, primary porosity flow within the bedrock is likely low based on published values for similar rock types. It was observed during the 2020 geotechnical engineering field investigation conducted by PSI that fracturing and jointing are pervasive throughout the rock at all sampled depths (PSI 2022a). Iron staining and calcite deposits were observed on fracture faces of rock core samples, as well as rock saturation surrounding fractures, indicating secondary porosity flow of groundwater. It is possible that transmissive fracture systems within the bedrock may produce greater hydraulic conductivities. The overburden hydraulic conductivity could potentially be up to an order of magnitude greater than flow within the bedrock based on typical permeabilities of diorite versus granular soil.

Subsurface conditions in the southeastern portion of the Site suggest the presence of a potential remnant stream valley (PSI 2020). Borings advanced in the area indicate that the top of weathered bedrock elevation decreases sharply, forming an approximately linear valley feature in the bedrock. Soil samples recovered during the advancement of select borings adjacent to or in this linear bedrock feature are potentially indicative of stream deposits (e.g., sand with gravel). A preliminary review of historical information revealed that the historical Piney Brook stream, or an associated meandering channel, may have transected the southeastern portion of the Site near the location of the potential remnant stream valley prior to the Site being developed. The potential remnant stream valley likely has a greater hydraulic conductivity than surrounding strata and may, locally, create a downward vertical hydraulic gradient that intercepts the greater northwest to southeast groundwater flow observed at the Site.

2.3 Groundwater Use

Groundwater is not used as a source of potable water on or in the vicinity of the Site. There are no known potable or supply wells within 1,000 feet of the Site. Further, no future potable wells are proposed to be installed on the Site. The Site and surrounding properties are fully serviced by public utilities including water and sewer supplied by the District of Columbia Water and Sewer Authority.

2.4 Site Investigation History

Previous investigations at the Site have been conducted by Versar, PSI, and others. Based on historical information provided in the Versar 2003 Environmental Site Assessment Report, petroleum-related soil and/or groundwater impacts have been identified at the Site at various times during the facility operation. The petroleum-related impacts have been attributed to leaking underground storage tanks (USTs) utilized at the facility for storing fuel and/or automotive oils. Following the discovery of the soil impacts, remediation activities at the Site were initiated in the late 1980s and continued through 2002. Between 1989 and 1990, a groundwater recovery and treatment system was installed in the southeastern portion of the Site. Site renovation activities were also performed from 1990 through 1991, during which several USTs and approximately 13,750 cubic yards of

petroleum-impacted soil were removed from the Site for proper disposal. In 1993, chlorinated solvent impacts were identified in groundwater collected from the southern portion of the Site. In 1996, a risk assessment was conducted to address concerns regarding concentrations of solvents detected in on-site monitoring wells. The report concluded that the detected volatile organic compounds (VOCs) posed no excess risk to human health at that time and sampling for VOCs was discontinued (Versar 2003). In 1998, an in-well separator free product recovery pump was installed in one of the on-site monitoring wells. In 1999, an air sparge unit replaced the in-well separator due to insufficient product recovery. In 2002, environmental media at both on-site and off-site locations were investigated, as documented in Versar (2003). The highest observed concentrations of chlorinated solvents and associated daughter compounds at on-site locations ranged from 100 to 500 µg/L while the highest observed concentrations at off-site locations ranged from 148 to 1,100 µg/L indicating that this contamination and the associated daughter compounds are most likely the result of releases to groundwater from one or more of the former dry cleaners that historically operated along 14th Street NW (Versar 2003). The historical information (Versar 2003) also indicated that on-site chlorinated solvent and petroleum-related groundwater impacts appeared to be degrading and/or naturally attenuating. The report also stated that a lack of off-site detected petroleum-related impacts indicated that the bus garage operations and maintenance activities had not significantly impacted the surrounding area (Versar 2003).

Environmental sampling was conducted within the on-site building footprint during the November and December 2019 preliminary environmental investigation (PSI 2020) and the November and December 2022 supplemental site assessment activities (PSI 2023b, c). Complete excavation and removal of seven USTs,13 aboveground storage tanks and all associated underground infrastructure were completed in 2023. Soil impacts were generally localized in the vicinity of the inground structures used for facility operations.

Historical soil samples collected during investigation activities between 2019 and 2023 were submitted for laboratory analysis using some or all of the following testing methods: VOCs via United States Environmental Protection Agency (USEPA) Method 8260, semivolatile organic compounds (SVOCs) via USEPA Method 8270, total petroleum hydrocarbons (TPH) diesel range organics (DRO) and gasoline range organics (GRO) via USEPA Method 8015D, and Priority Pollutant metals via USEPA Methods 6010C and 7471B. Elevated concentrations of TPH and fuel-related VOC constituents were identified in samples collected from locations in the vicinity of the former inground structures used for facility operations. Generalized areas of identified impacts are presented on Figure 3 as reference.

Based on former land uses, additional contaminants may be present at the Site. Site records indicate that an automotive repair facility was previously located on the southwestern portion of the Site and historical dry cleaning operations have been identified off site along 14th Street. In the most recent sample collection events conducted on-site between 2019 and 2022, chlorinated solvents and associated daughter compounds have been identified at concentrations ranging from 1.8 μ g/L to 690 μ g/L in groundwater samples and ranging from 0.0025 milligrams per kilogram (mg/kg) to 0.74 mg/kg in soil samples collected from the Site. Groundwater impacts will be addressed in a forthcoming CAP.

2.5 Proposed Remedy – Excavation and Off-site Disposal

All encountered underground infrastructure has been removed and disposed of off site. These structures included USTs, subsurface sand and grit filters, oil-water separators, and associated underground piping. If additional structures are encountered, they will also be removed and disposed of off site.

Excavation and off-site disposal are planned as a source control measure to remove impacted material from the Site. All excavated material will be removed from the Site and disposed of at an approved off-site waste disposal facility (impacted soil) or at an approved off-site location (non-impacted soil). Excavated material will be considered 'impacted' if analytical results indicate an exceedance of USEPA Industrial Soil Regional Screening Levels (RSLs) or the District of Columbia Risk Based Corrective Action (DCRBCA) screening levels, whichever is lower, and the background threshold value for arsenic, as identified in Section 3.2. No excavated material will be reused on the Site. If needed, the Site will be excavated to bedrock but not deeper.

Pre-excavation sampling conducted on site identified soil impacts on the southern and northeastern portions of the Site. Overall mass grading has been completed on the majority of the Site with all excavated material removed and not reused. Additional soil excavations are planned for the area of identified petroleum impacts located on the northeastern portion of the Site. This targeted excavation area is identified on Figure 2. Additional areas of excavation will be determined by a site-wide grid soil sampling program, as discussed in Section 3.2. Material will be handled as described in Section 3.2, and the extent of impacted material removed will be defined by performing a confirmatory soil sampling program, as discussed in Section 3.3. Excavated soil will not be used as backfill material for regrading. All excavated soil will be removed and disposed of at an approved waste disposal facility.

3 Interim Corrective Action Plan

Soil excavation with off-site disposal is planned as a source control measure to remove impacted soils from the Site. Material removed from targeted excavation areas (Figure 2) will be disposed of at an approved off-site waste disposal facility (impacted soil) or at an approved off-site location (non-impacted soil). Guidance for field screening and sample collection is provided in Section 3.2. Proposed soil sampling locations are presented in Figure 3.

Additionally, future engineering and monitoring controls proposed for the Site include a sub-slab vapor management system for future buildings (Section 3.6) and installation of seven groundwater monitoring wells (Section 3.7). Groundwater remediation, as needed, will be addressed under a subsequent CAP submittal.

In summary, the planned corrective action measures, and associated statuses as of the date of this ICAP, include:

- Task 1: Removal of underground structures, storage vessels, and associated distribution piping: Complete
- Task 2: Identify additional areas of soil impacts on site via Grid Sampling Program (Section 3.2): Ongoing
- Task 3: Impacted soil excavation and disposal (Sections 3.3 and 3.4)
 - o Known petroleum impacts: Pending
 - o Other areas of impacts, if encountered: Pending
- Task 4: Free phase petroleum removal and disposal if encountered (Sections 3.3.4 and 3.3.5): Pending
- Task 5: Vapor management system below slab of all proposed on-site structures (Section 3.6): Pending
- Task 6: Groundwater monitoring well installation and monitoring (Section 3.7): Pending permit approvals

3.1 Planning

To date, site-wide pre-excavation soil sampling activities have been completed during Site grading efforts. Soil samples collected during the pre-excavation soil sampling effort were analyzed for waste disposal parameters in order to facilitate direct loading of the excavated material into dump trucks and avoid stockpiling on site.

Additionally, the pre-excavation soil sampling analysis was used to identify the approximate depth and extent of TPH impacts in soil as the site excavation activities approach the planned sub-grade of the new building structure. The proposed focused, expanded excavation of soils within the identified impacted areas are shown on Figure 2.

The selected contractor will perform a site inspection and structural assessment to determine the safest method for continued access and preparation of the proposed work areas, as well as for the removal, handling, and transportation of excavated materials from the Site. Based on field observations and the results of pre-excavation soil sampling, the targeted excavation area encompasses approximately 10,000 square feet.

3.2 Grid Sampling Program

A site-wide grid soil sampling program will be conducted in an approximate 50-foot grid post site-grading and excavation to document on-site subgrade soil conditions prior to structure construction as shown on Figure 3. Specifically, the 50-foot grids will be approximately 50 feet x 50 feet in size over the majority of the Site, and a minimum 25 feet x 50 feet in size, or smaller, over the area of identified petroleum impacts located on the northeastern portion of the Site. Up to two soil samples will be collected from each sampling gird: one sample from the center of the grid, and one sample from a variable location in each grid if visual indicators or photoionization detector (PID) field screening results indicative of the impacts from the constituents of concern are observed. If no visual indicators are observed, 10 locations will be screened at random. Areas of excavation that contain shoring along the sidewalls will have the variable location samples collected from as close to the edge of excavation as possible. The resulting sampling grid results in 109 center-grid soil sampling locations, five samples will be collected as close as possible to the locations of MW-003, TMW-05, TMW-023, SB-002, and SB-011 (PSI 2022a) (SGSS110 – SGSS114, Figure 3). Soil sample SGSS03 (Figure 3) will be taken as close as possible to the location of MW-002 and will serve as the center-grid sample as well.

At each proposed sampling location, soil will be collected from the center at approximately 8 to 12 inches below the proposed finished subgrade surface (which is approximately 169 feet throughout the majority of the Site) with a clean stainless steel hand auger following the guidance in Section 4 and will be analyzed for VOCs via USEPA Method 8260, SVOCs via USEPA Method 8270, TPH-DRO/GRO via USEPA Method 8015D, polychlorinated biphenyls (PCBs) via USEPA Method 8082A, Priority Pollutant Pesticides via USEPA Method 8081B, Priority Pollutant Metals via USEPA Methods 6010C and 7471B, and hexavalent chromium via USEPA Method 7196, following the guidance in Section 4.

Soil sample results will be compared to the final remediation levels identified in Table 1, which include:

- DCRBCA Sub-surface Soil Risk-Based Screening Levels for a Commercial Worker including indoor and outdoor inhalation (2011),
- DCRBCA Soil up to Depth of Construction for Construction Workers including ingestion, inhalation (vapor emissions and particulates) and dermal contact (2011),

- USEPA Industrial Soil RSLs (2023a). USEPA RSLs are based on a target cancer risk of 1×10⁻⁶ and a target non-cancer hazard of 0.1 to account for additive effects, and
- Background threshold value for arsenic in Soil Type 4, Urban Land (Table 6.21, Tetra Tech 2022). Alternate remediation levels may be proposed when there is no documented source for the constituent in question. This alternate remediation level for arsenic was approved by DOEE in November 2023.

The Site is currently undergoing redevelopment for future commercial use; therefore, current and future residential use of the Site is not likely to occur. Currently, construction and utility workers may be exposed to constituents present in subsurface soils, groundwater, and vapors migrating from soil or groundwater. Potential exposure to groundwater will be limited through the use of dewatering practices, as discussed in Section 3.3.5; therefore, worker exposure to groundwater is not likely to occur. Groundwater at the Site is not currently being used as a potable water source and will not be used for the foreseeable future. Surficial soils have been excavated and removed from the Site; therefore, the exposure pathway for surficial soil is not complete. The conceptual site model (CSM) for potential receptors and exposure pathways is presented and discussed in the Draft Baseline Risk Assessment Report (Arcadis 2023), provided to WMATA and DOEE under separate cover.

Based on this CSM, final remediation levels were selected based on the most likely current and future scenarios for the Site that may be potentially complete pathways of exposure. Therefore, soil sample results from the grid soil sampling program will be compared to the minimum of the DCRBCA or the USEPA Industrial Soil RSLs and the Background threshold value for arsenic as identified in Table 1. Based on the findings of the soil screening, additional impacted areas may be identified, and additional areas of targeted soil excavation may be proposed. Areas noted to have impacts will be over excavated 12 inches and resampled. Excavation for remediation purposes below the groundwater level or into bedrock is not proposed.

Following redevelopment, the entire ground surface at the Site will be covered by either a building or concrete driveways. Though contaminant migration from soil to groundwater is likely to be minimized under the building footprint, screening levels for the protection of groundwater are presented in Table 2 for the purpose of identifying concentrations remaining in soil that have the potential to impact groundwater above the risk-based RSLs or Maximum Contaminant Levels. This information will be used to determine the need for additional groundwater monitoring in areas of the Site with exceedances of the screening levels for the protection of groundwater. Groundwater impacts will be addressed in a separate CAP submittal that is forthcoming, which includes the installation of six new groundwater monitoring wells, proposed quarterly groundwater monitoring plans and potential remedial action which will be performed as needed.

3.3 Targeted Soil Excavation

During intrusive activities, engineering controls, including fencing and signage, will be established around the work zone to prevent unauthorized personnel from entering the work area. Excavation workers and authorized personnel will use appropriate personal protective equipment as specified in a Health and Safety Plan to be prepared by the contractor.

3.3.1 Dust Control

Wet methods will be used when sweeping, brushing, and cleaning work areas as a dust control measure. Trucks equipped with tarps will be used for the transportation and off-site disposal of impacted soil and construction debris. Excavated material will be direct loaded to dump trucks as much as possible to minimize soil stockpile and

staging on site. Any soil stockpiles that need be created will be covered by heavy duty polyethylene sheeting when not being actively managed. Workers, using both visual and real-time air monitoring methods, will monitor for particulates at the perimeter and within the work area. If fugitive dust exceeds action thresholds specified in the Health and Safety Plan, the work will temporarily cease until proper engineering controls are in place (e.g., use of a water truck, tarps/temporary covers).

3.3.2 Traffic Control and Road Maintenance

Trucks and subsurface excavation equipment will enter the Site using the entrance/exit at the southern portion of the Site. Truck and excavation equipment will be staged on site and loaded in the order of their arrival. Truck and excavation equipment tires/treads will be broom cleaned (or equivalent) using wet methods prior to exiting the Site via the approved entrance/exit to minimize the tracking of soil onto off-site streets, other paved areas, and sidewalks. If material is tracked from the Site onto the surface of off-site streets, other paved areas, or sidewalks, the deposited material will be removed as soon as possible, or at a minimum, daily. Current maintenance measures include sweeper trucks, wheel washes, and cattle grates.

3.3.3 Concrete Processing and Handling

Concrete removed from the excavation will be disposed of off site at an approved waste disposal facility; it will not be used as fill material or recycled at the Site. Excavated concrete will be segregated from excavated soils for recycling.

3.3.4 Free Product and Extent of Impacts in Excavated Soils

Excavated soil will be periodically screened with a photoionization detector and a non-aqueous phase liquid dye test kit such as Red Oil-O or similar reagent to confirm areas of soil impacts in the targeted excavation areas. Grossly impacted soils (soil containing free product, noticeable odors, and/or elevated PID readings) will be removed to the maximum extent practicable without undermining the structural integrity of on-site or adjacent infrastructure. To preserve the load-bearing capacity of the subsurface soils, excavation of impacted soil will not continue below the groundwater table level, if encountered, off site, and/or more than 2 feet beyond the extent of the planned foundation footprint. Potential impacts to on-site groundwater, as well as proposed quarterly groundwater monitoring plan and potential remedial action, will be addressed in a separate CAP provided to WMATA separately.

If encountered, free product in excavated soils will be captured to the maximum extent practical with sorbent pads. If a significant volume of free product is encountered, a vacuum truck, pump, or other similar capture method may be utilized to remove the product from the excavation area to be staged on site in a frac tank, baker tank, or similar mobile container pending characterization and disposal at an approved off-site waste disposal facility. All excavated soil will be handled as per guidance in Section 3.3.7 with confirmation sampling conducted as per guidance in Sections 3.2 and 3.4.

3.3.5 Construction Dewatering

Based on field observations, the approximate groundwater table level is between 13 and 15 feet below the ground surface. If excavation activities extend below the groundwater table and/or rainwater enters the excavations, construction dewatering will occur as needed so that excavation and construction activities can proceed. Water

Interim Corrective Action Plan Washington Metropolitan Area Transit Authority Northern Bus Garage

removed by dewatering efforts will be pumped into a frac tank, baker tank, or similar mobile container where it will be treated and discharged under the Site's discharge permit. On-site treatment may include sediment removals, skimmer booms, flocculant treatments and/or pumping construction water through a multi-phase filtration system that includes granular-activated carbon vessels prior to discharge.

Specific methods of treatment will be dependent on the characteristics of the collected groundwater sample analysis to ensure compliance with the DC Water and Sewer Authority (DCWSA) discharge permit conditions. The DCWSA discharge permit indicates that collected construction water will be analyzed for TPH Oil and Grease via USEPA Method 1664, VOCs via USEPA Method 8260, PCBs via USEPA Method 608.3, total lead via USEPA Method 6010, total suspended solids, and pH. All site construction water found to be within acceptable DCWSA permit limits will be discharged to the combined sanitary sewer system. There will be no discharge to any surface stormwater network. A copy of the DCWSA Temporary Discharge Authorization Permit is presented as Appendix A.

If free product is encountered in the groundwater, it will be pumped into a separate frac tank, baker tank, or similar mobile container and staged on site pending waste characterization analysis. The appropriate off-site disposal method will be determined and conducted based on the results of the waste characterization analysis.

3.3.6 Stormwater Management

The former on-site buildings were demolished prior to excavation, and therefore, stormwater management continues to be a critical component of the Site's redevelopment as excavation and grading activities are ongoing. The types of stormwater management controls to be implemented during the excavation depend on the Site's redevelopment schedule. Temporary stormwater management controls are currently in place for the overall construction/grading phase of the project and should be maintained and inspected daily during excavation efforts.

3.3.7 Management of Investigation-Derived Waste

All excavated soil and material will be directly loaded into dump trucks and removed from the Site to the maximum extent possible, facilitated by pre-excavation characterization sampling (Sections 3.1 and 3.2). If excavated material needs to be staged on site, it will be stockpiled and covered by heavy-duty 6-mil or equivalent polyethylene construction sheeting in a manner that prevents rainwater from infiltrating the pile until the material can be removed in accordance with state and federal regulations. Investigation-derived waste (IDW) generated during the installation of the proposed groundwater monitoring wells will be containerized in 55-gallon drums pending characterization and off-site disposal.

The following streams of IDW are anticipated to be generated during the source control corrective action: concrete, subsurface soil, and decontamination water. Additional samples will be collected as needed for waste characterization purposes to facilitate direct loading and minimize the duration of on-site stockpiling of excavated materials. If waste materials are determined to be hazardous based on pre-characterization analysis, they will be segregated and managed separately from non-hazardous waste. Additional waste characterization samples may be required by the selected disposal facility if excavated material exceed approved volumes. If groundwater is encountered during the excavation effort, the water will be pumped into a separate frac tank, baker tank, or similar mobile container and staged on site pending waste characterization analysis and subsequent treatment/discharge.

3.4 Post-Excavation Verification Sampling

Soil samples will be collected from the bottom of the targeted excavation areas to document the soil concentrations at the excavation extents. These samples will be collected as part of the overall site grid-sampling program (Section 3.2), which includes a 50-foot x 50-foot sampling grid over most of the Site, and a minimum 25-foot x 50-foot or smaller sampling grid over the areas of identified petroleum impacts. The sampling grid is presented on Figure 3. The majority of the western and northern sides of the Site are confined by shoring while site grading efforts are on-going, which prevent access to excavation sidewalls for sampling purposes. The eastern and southern site boundaries "daylight" to the downslope gradient and do not have any sidewall present. Where possible, variable location samples will be collected as close to the sidewall locations as possible in areas of known soil impacts.

3.5 Backfill with Amendment and Restoration

After completion of overburden and impacted soil excavation, off-site clean fill provided by a reputable aggregate supplier will be added to the excavation as required to achieve the final finished grade. Clean fill will be certified by the supplier and/or demonstrated to be clean (below industrial RSLs or DCRBCA, whichever is lower). Certifications will be submitted to DOEE for review 15 days prior to any use in backfilling activities. Excavated site soils will not be used for backfilling, regrading, or restoration activities unless specifically approved by DOEE. Based on the Site location, the proposed backfill material will be either bank run gravel, sand, or processed stone that will be sourced from a native quarry.

In the area of TPH impacted soils where excavation is conducted below the final finished grade, agricultural grade granular gypsum (calcium sulfate di-hydrate) and/or Epsom salt (magnesium sulfate heptahydrate) will be emplaced and overlain with the approved backfill material. In general, dissolved sulfate in groundwater decreases at areas with known petroleum hydrocarbon impacts as sulfate is consumed as a terminal electron acceptor degrading the petroleum hydrocarbon in the process via anaerobic bio-oxidation. Additional sulfate supply will enhance the ongoing biodegradation. Gypsum has a low solubility (approximately 2 grams per liter at 20°C) and will provide a lasting source of sulfate, whereas Epsom salt dissolves rapidly (approximately two orders of magnitude higher than gypsum at 20°C) and will readily provide sulfate to facilitate anaerobic bio-oxidation.

The gypsum and Epsom salt amendment loading will target in situ sulfate concentrations between 2,000 and 3,000 milligrams per liter, at a 0.05 percent loading rate, which is optimum to initiate the anaerobic bio-oxidation performance and maintain aggressive degradation rates with a steady supply of terminal electron acceptors in the form of sulfate. After emplacement, the sulfate amendment will be watered with potable water until thoroughly soaked to initiate sulfate dissolution before approved backfill material is overlain. The layered sulfate amendment with clean backfill approach will serve as a long-term sulfate source to stimulate continued anaerobic degradation of petroleum hydrocarbons in the subsurface.

Where needed, excavations will be backfilled with clean fill within approximately 1 foot of grade and restored to a manner similar to the original surface cover. Clean fill will consist of natural mineral soil and be void of debris. Fill material will be spread and compacted in accordance with site-specific engineering specifications.

3.6 Vapor Intrusion Mitigation

Infrastructure for an active soil vapor management system will be incorporated within the bottom floor/slab of any b uilding constructed as part of future development of the Site. The vapor management system will be designed as a n active system that will utilize a petroleum- and solvent-resistant 30-mil-thick vapor barrier. Final configuration of the active system components located above the slab on grade within the building, including manifolding of piping, sizing of fans, and the decision to use activated carbon or other treatment media will be deferred pending the results of the post construction sub-slab sampling.

The vapor management system will be installed as a preemptive engineering control and will incorporate sampling ports where appropriate in order to facilitate the post construction sub-slab sampling as well as future monitoring. The vapor barrier and collection system will be installed beneath the floor slab, with vertical vent risers installed within the building to facilitate ventilation. Monitoring and inspection of the vapor management system will be conducted on a regular basis to monitor interior air quality conditions. If elevated vapor concentrations are identified in the zone beneath the floor slab, a vacuum system and air stripper will be installed to treat captured vapors prior to discharge into the atmosphere. Additional details of the soil vapor management system are included in the October 16, 2023, WMATA-Northern Bus Division Replacement Basis of Design Report, Vapor Management System (Clark 2023), which is presented as Appendix B, and corresponding design plans are presented as Appendix C. Final sub-slab sampling point locations and associated specifications will be submitted to DOEE for review and comment prior to implementation.

3.7 Monitoring Well Installation and Sampling Plan

In addition to the soil excavation and vapor intrusion mitigation plan, a total of seven 4-inch groundwater monitoring wells are proposed to be installed in the general vicinity of on-site areas with the reported highest chlorinated volatile organic compound (CVOC) and TPH impacts to groundwater for the purpose of monitoring current site conditions and potential future investigative use. Wells will be installed in accordance with the District of Columbia Municipal Regulations (DCMR), 21 DCMR Chapter 18 Well Construction, Maintenance, and Abandonment Standards.

3.7.1 Permitting and Notifications

Well permit applications will be prepared and submitted for approval through the Surface and Groundwater System (SGS). DOEE will be notified of monitoring well installation activities a minimum of two days prior to the initiation of the activities. A well completion report will also be prepared and submitted within 60 days following completion of monitoring well installation activities.

Prior to commencing drilling activities, the proposed monitoring well locations will be clearly marked in the field and a utility check will be performed by a qualified subcontractor to locate subsurface utilities near the proposed monitoring well location. The proposed locations of monitoring wells are shown on Figure 3 and Figure 4. The proposed locations may be offset by up to 15 feet during implementation due to utilities or other existing or planned structures.

3.7.2 Well Installation

Upon approval of the well permit, seven monitoring wells will be installed by a licensed driller in the DC area. Three wells in the area of TPH impacts will be set and screened in the unconsolidated zone straddling the water table, as described below. Two unconsolidated and bedrock well pairs will be set and screened in the area of known CVOC impacts. Previous geologic and geotechnical characterization have identified the diorite bedrock surface across the Site (PSI 2022a, PSI 2023b, c), and this surface (as to be modified for building construction in the western side of the Site) is shown on Figure 4. One CVOC area well pair location was selected to target a previously identified topographic low in the bedrock surface (PSI 2022a) adjacent to soil boring SB020S and geotechnical boring 19BH080, which are located approximately 80 feet north of temporary well pair TMW-004S/D (location of maximum CVOC concentrations in 2022 [PSI 2023c]). The second well pair location was selected to be in the vicinity of temporary well locations TMW-022S/D (located adjacent to former repair/maintenance activities [PSI 2023c]).

Borings in the area of TPH impacts will be advanced using 6.25-inch inner diameter hollow-stem auger drilling. Continuous split spoon samples will be collected for lithologic characterization until refusal is met. Depth to water will be determined. A 4-inch diameter monitoring well will then be set with the screen set 2 feet above the water table interface and 8 feet below the water table, as described below.

The borings for the two shallow (unconsolidated zone) wells in the area of CVOC impacts will be advanced using 6.25-inch hollow-stem auger drilling. Continuous split spoon samples will be collected for lithologic characterization until refusal is met. The bottom of the well screen will be set at the depth of refusal, directly above bedrock.

The borings for the two deep (bedrock) wells in the area of CVOC impacts will be installed with 12-inch fluid rotary drilling. Continuous split spoon samples will be collected for lithologic characterization until refusal is met. Temporary casing will be set to allow diamond bit coring to begin in the upper bedrock. A permanent 8-inch diameter steel isolation casing will then be set at least 10 feet into competent bedrock. Diamond bit coring (HQ core size) will continue until a saturated fracture zone is encountered. Cores will be described, including information regarding oxidation, fracture frequency/orientation, and rock quality designation will be calculated. The 10-foot well screen will be set at a depth that includes the shallowest observed water-bearing fracture set. The borehole will be widened using air rotary to allow the required annular space to set the well.

The shallow wells will be drilled and installed first. If there is any indication of separate-phase contamination after drilling the shallow wells (for instance visual evidence of dense non-aqueous phase liquid [DNAPL] in cuttings or purge water and high PID readings) DOEE will be notified before drilling of the deep wells in order to assure protection of the deeper bedrock aquifer. Should such an event occur, a decision will be made at that time concerning whether the deep wells should be installed or relocated.

At each of the seven well locations, a 4-inch diameter monitoring well will be set with 10 feet of 4-inch diameter continuous stainless steel wire-wrap screen of 0.010-inch slot size surrounded by a silica sand filter pack equivalent to U.S. Silica No. 1 sand and a Schedule 40 polyvinyl chloride riser. If backfilling is required in the unconsolidated zone to set the well at the target depth (e.g., shallow TPH area wells), the boring will be backfilled with bentonite pellets. The sand filter pack should extend at least 2 feet above the top of the well screen. If backfilling is required in the bedrock zone, cement grout will be used. At least 2 feet of bentonite slurry (ratio of 1 gallon of water to 2 pounds of bentonite) will be placed above the well filter pack. The remainder of the well annulus will be cemented to ground surface. Each monitoring well will be completed with flush-mounted manholes set in 2-foot by 2-foot concrete pads. Well construction details planned for inclusion in the well permit package are

provided in Appendix D. Drilling tooling and well construction information provided herein are based on available information from prospective drilling contractors. Final drilling and well construction details are subject to modification during driller contracting and the well permitting process.

Field screening will consist of lithologic soil data, approximate depth to ground water, visual observations (e.g., staining), olfactory observations and, volatile organic vapor measurements using a PID. The PID will be calibrated before use at the Site to a test gas standard consisting of 100 parts per million isobutylene.

A mixture of detergent and deionized water will be used to decontaminate equipment or tools with the following three-step process: the tool or equipment is rinsed or washed clean of dirt or other gross contamination with water, submerged and scrubbed in detergent solution, and rinsed clean.

3.7.3 Well Development

Well development will take place no sooner than 24 hours after the well is completed. Initially, the wells will be developed using a surge block and then, fines will be removed using a submersible pump. A minimum of three well volumes will be purged from the well and the well will be purged until groundwater quality parameters (temperature, pH, conductivity, dissolved oxygen, and oxidation-reduction potential) stabilize within 10%.

3.7.4 Waste Management

Soil waste and purge water generated during well reinstallation activities will be containerized in Department of Transportation approved 55-gallon steel drums. Drums will be appropriately labeled and temporarily stored on site pending analytical results. Upon receipt of analytical results, the drums will be removed from the Site and transported to an appropriate off-site disposal facility.

3.7.5 Surveying

A certified land surveyor will survey the top of casing elevations and ground surface elevation of the newly installed monitoring wells. Elevations will be measured using the National Geodic Vertical Datum (NGVD) 88 Geodetic datum.

3.7.6 Sampling

After a minimum of 48 hours following development, each newly installed well will be sampled using low-flow sampling methods. Samples will be analyzed for VOCs via USEPA Method 8260, SVOCs via USEPA Method 8270, TPH-DRO/GRO via USEPA Method 8015D, PCBs via USEPA Method 8082A, Priority Pollutant Pesticides via USEPA Method 8081B, Priority Pollutant Metals via USEPA Methods 6010C and 7471B and, hexavalent chromium via USEPA Method 7196 following the guidance in Section 4. Samples for analysis of bio-oxidation monitoring parameters will also be collected from wells in the TPH area. Including sulfate and nitrate by USEPA Method 8015B Modified, sulfide by SM4500-S2 D-2000, and total dissolved solids by USEPA Method 160.1. Continued monitoring of the six new groundwater monitoring wells will be quarterly, and the specific details will be covered in the forthcoming CAP.

4 Quality Assurance Project Plan

This section presents the data quality objectives (DQOs), the environmental sampling and analysis program, and quality assurance/quality control procedures that will be employed to verify that technical data generated are accurate, representative, and of known and usable quality.

4.1 Data Quality Objectives

DQOs are qualitative or quantitative statements derived during the planning process. DQOs are used to clarify the study objectives and define the appropriate type of data required to support project decisions. The DQOs for the scope of work presented in this ICAP are presented below:

- Waste characterization sample data will be collected in such a manner that the data will be usable to determine appropriate waste disposal measures.
- Soil quality data will be collected in such a manner to determine the extent to which soil removal activities achieve the interim remedial goal of removing soil with significant impacts in the targeted excavation area.
- Groundwater quality data will be collected in such a manner that the data will be suitable to determine
 whether the groundwater quality meets disposal facility criteria only. It should be noted that the focus of this
 ICAP is the handling and removal of impacted soil, and groundwater dewatering described herein pertains to
 construction dewatering for the purposes of excavating impacted soil only. If encountered, guidance for the
 management of on-site impacted groundwater will be provided in a separate CAP.

DQOs will be achieved through the implementation of specific procedures for sample collection, blank assessments, chain-of-custody documentation, equipment calibration, internal quality control audits, preventive maintenance, and corrective actions as necessary.

4.2 Sampling Quality Controls

4.2.1 Field Documentation

Pre-printed field forms and logs or electronic field forms will be used to document field operations and sample custody. For daily activities, a pre-printed daily log or bound field logbook will be used.

All aspects of sample collection and handling as well as visual observations will be documented. All entries will be dated, legible, and contain accurate and inclusive documentation of project activities. At the end of each day's activity, or of a particular event as appropriate, all documents in the field will be secured by the field manager for each task. Once completed, the pre-printed field forms and electronic field records will be maintained as part of the project files.

4.2.2 Field Quality Assurance

Field quality assurance components of the proposed sampling-related activities are described below.

Waste Characterization. Pre-excavation concrete, soil, and water samples will be collected as needed for waste characterization purposes. Additional waste characterization analyses may be performed if required by the waste

disposal facility. The excavation sampling program is described below; additional information on procedures, sample handling and documentation is provided in Section 4.3:

- *Excavation Concrete*. All concrete waste that is anticipated to be found has been removed from the Site and recycled. If additional concrete is encountered during excavation efforts, it will be segregated from the excavated soil and also removed from the Site as per applicate regulations.
- Excavation Soil. Subsurface soil samples will be collected using a direct-push macro-core sampler or hand auger for waste characterization purposes. One composite sample per grid area will be collected from the 1to 5-foot below ground surface interval and be composited in a stainless-steel trowel and bowl. Samples will be analyzed for VOCs via USEPA Method 8260, SVOCs via USEPA Method 8270, TPH-DRO/GRO via USEPA Method 8015D, PCBs via USEPA Method 8082A, and Priority Pollutant Metals via USEPA Methods 6010C and 7471B.
- Excavation Area Groundwater. Groundwater and rainwater that pools in the proposed excavation areas during excavation efforts will be collected/staged on site in mobile tanks and will be analyzed for the following in compliance with the DCWSA discharge permit conditions: TPH Oil and Grease vis USEPA Method 1664, VOCs via USEPA Method 8260, PCBs vis USEPA Method 608.3, total lead via USEPA Method 6010C, total suspended solids, and pH.
- It should be noted that waste characterization sampling frequency will be based on the recovered volume of waste and is dependent on the selected waste disposal facility's requirements.

Post-Excavation Verification Soil Sampling. Confirmatory soil samples will be collected from the Site in a grid pattern as per the guidance in Section 3.2. The samples will be collected with hand auger where possible, or with an excavator or telescoping pole with a sampling cup to minimize the need for the sampler to enter an excavation. Post-excavation verification samples will be analyzed for VOCs via USEPA Method 8260, SVOCs via USEPA Method 8270, TPH-DRO/GRO via USEPA Method 8015D, PCBs via USEPA Method 8082A, Priority Pollutant Pesticides via USEPA Method 8081B, Priority Pollutant metals via USEPA Methods 6010C and 7471B, and hexavalent chromium via USEPA Method 7196.The sampling program procedures are further described in Section 4.3.

Decontamination. Decontamination of non-dedicated sampling equipment will be conducted using a three-step process (gross wash, gross rinse, and distilled water rinse) before and after sample collection at each location. Distilled water will be used during decontamination activities. Decontamination will be added to the collected construction water for staging and removal.

Field Duplicates and Blanks. Sampling precision will be measured through the collection and evaluation of field duplicate samples for constituents of concern. Parent and field duplicate samples will be collected together at a frequency of one in 10 samples per matrix for constituents of concern. Rinse blanks will be collected at a frequency of one blank per 20 environmental samples but will not be required if dedicated sampling equipment is used. Field duplicate samples and rinse blanks will be treated as separate samples during collection, shipping, and analysis, and will be analyzed by the same laboratory as the environmental samples.

Matrix Spike Samples. Analytical precision will be measured through the analysis of matrix spike/matrix spike duplicate sample at a frequency of one in 20 samples. The matrix spike sample will be a replicate of one of the environmental samples and simply indicated on the chain of custody for the analytical laboratory to process during sample receipt and login.

4.3 Sampling Procedures, Handling, and Custody

4.3.1 Calibration Procedures

Field equipment such as PIDs and water quality meters will be calibrated daily in accordance with the manufacturer's instructions as appropriate. Calibration data will be recorded on a field form or in the field logbook.

4.3.2 Sample Management

Samples will be collected in laboratory-provided sample containers appropriate for the selected analysis. Immediately after the samples are collected, they will be stored in insulated coolers pre-chilled to less than 6 degrees Celsius using double bags of ice. Samples will remain in the possession of the field technician until delivered to the laboratory courier or common carrier. Chain of custody forms will be used to document sample cooler possession at a frequency of one chain of custody form per sample collection day. Sample coolers will be sealed with custody seals prior to shipment.

4.3.3 Sample Identification

Each sample will be given a unique identification based upon sample matrix, location, and depth (for direct-push technology samples). Labels with sample identification including sample date, time, and preservation will be attached to each container.

Sample information will also be recorded on the chain-of-custody form and in the daily log. Sample identification nomenclature for the proposed sampling activities has been designated for each medium as follows:

- Verification bottom soil samples. Designated to start with VBSS#-#(ft-ft) where # indicates the excavation area and # indicates the sample number (e.g., 1, 2, 3) and ft-ft indicates the sample collection depth below ground surface.
- Subsurface grid soil samples. Designated to start with SGSS#-#(ft-ft) where # indicates the grid identifier and # indicates the sample number (e.g., 1, 2, 3 108) and ft-ft indicates the sample collection depth below ground surface. For example, a subsurface soil sample collected from grid #30 would be named "SGSS30-1 (1-1.5)".
- Groundwater samples. Designated by monitoring well ID followed by date collected in parentheses (mmddyy).
- *Field duplicates.* Designated by adding 100 to the parent ID. For example, a field duplicate for sample VSSS4-02(20-22) would be named VSSS4-102(20-22). When field duplicate samples are collected, the location of the parent ID will be recorded in the field notes.
- IDW characterization samples. Designated to start with IDW, then the storage container type and the date collected (mmddyy). For example, a sample collected from an on-site soil stockpile on June 1, 2023, would be named: IDW-SoilStockpile (060123), a sample collected from an on-site soil or water drum generated from future well installation on June 1, 2023, would be named: IDW-Drum# (060123), and a sample collected from an on-site construction water on June 1, 2023, would be named: IDW-CGW(060123).

4.4 Analytical Quality Controls

Laboratory quality control will include laboratory control samples/laboratory control sample duplicates, initial and continuing calibration standards, laboratory duplicates, matrix spike/matrix spike duplicates, and method blanks. A matrix spike/matrix spike duplicate sample will be analyzed at a frequency of one in 20 samples. The matrix spike will be a replicate of one of the environmental samples.

4.5 Analytical Procedures

Field samples will be analyzed using USEPA-approved methods by a fixed-base laboratory. The proposed analysis and analytical methods for confirmatory soil samples and groundwater samples include VOCs via USEPA Method 8260, SVOCs and PAHs via USEPA Method 8270, TPH-DRO/GRO via USEPA Method 8015D, PCBs via USEPA Method 8082A, Priority Pollutant Pesticides via USEPA Method 8081B, Priority Pollutant metals via USEPA Methods 6010C and 7471B, and hexavalent chromium via USEPA Method 7196.

Waste characterization analyses will be dependent on the selected disposal facility. Samples are proposed to be analyzed by Phase Separation Science (PSS), in Catonsville, Maryland. PSS is accredited by the nationally recognized National Environmental Laboratory Accreditation Program, and maintains accreditation in USEPA Region III States which includes Pennsylvania, Maryland, Virginia, West Virginia, Delaware, and the District of Columbia through reciprocity. The reporting limit and method detection limit summaries for the proposed analysis suite are presented as Table 2. Analytical results will be reported to the method detection limit.

4.6 Data Management

The project analytical laboratory will provide Level II analytical laboratory reports and electronic data deliverables (EDDs). Laboratory data reports will be provided in Contract Laboratory Program type packages that include final results (uncorrected for blanks and recoveries), analytical methods, quantitation/detection limits, surrogate recovery data, and method blank data. Analytical results will be reported to the method detection limit. EDDs will be provided in EQuIS 4-file format.

4.7 Data Verification, Validation and Usability

A procedure for data verification and usability will be implemented throughout the scope of work. Specifically, the database manager will use EQuIS to cross-check laboratory EDDs for completeness, screen analytical results against final remediation levels identified in Section 3.2 and populate screened data into report tables. A Level IV data validation of approximately 10 percent of the analytical laboratory reports will be conducted in accordance with USEPA National Functional Guidelines for data validation, method criteria, and laboratory-specific quality control sample recovery limits as guidance, where appropriate. The results of the data validation will be summarized in a checklist-style report, documenting the items reviewed with text explanations, notations of deficiencies, and a summary of the qualifications applied to the analytical data. Any issues that could impact data usability or quality will be noted in the validation reports.

4.8 Assessment and Reporting

Post-excavation soil sampling will be conducted to document the site conditions after the target volume of impacted soils has been removed. Analytical results will be promptly reviewed and compared to the final remediation levels identified in Section 3.2 to make informed decisions and assess the overall performance of the corrective action measures. If the post-excavation soil results indicate that soil impacts at concentrations above the applicable remedial standards remain in place, additional soils may be excavated if those activities can be performed in a safe manner and without negatively impacting the structural integrity of the future building(s). Remedial action completion report(s) will be prepared to document the proposed corrective actions implemented in accordance with this plan. Future quarterly groundwater sampling is proposed for the seven new monitoring wells referenced in Section 3.7. Details pertaining to the future quarterly sampling will be included in the forthcoming CAP that will be submitted under a separate cover.

5 Schedule and Monitoring

Monitoring of groundwater will continue following site development. Monthly site inspections and well gauging will be conducted for the first 12 months, and then once a quarter following the initial 12 months.

6 References

- Arcadis. 2023. DRAFT Baseline Risk Assessment Report. Washington Metropolitan Area Transit Authority, Northern Bus Garage. July 20.
- Clark. 2023. WMATA-Northern Bus Division Replacement Basis of Design Report, Vapor Management System. October 16
- District of Columbia Risk-Based Corrective Action Technical Guidance (Risk-Based Decision Making). 2011. District Department of the Environment Toxic Substances Division Underground Storage Tanks Branch. Updated June.
- DOEE. 2023. Directive for Site Characterization. WMATA Northern Bus Division, 4615 14th Street, NW, Washington, DC 20011, LUSTCASE #: 2021011, LRDB CASE#: SR-175-2023. July 27.
- PSI. 2020. Preliminary Environmental Investigation Report. February 7.
- PSI. 2022a. Comprehensive Site Assessment Report. March 10.
- PSI. 2022b. Soil Remediation and Vapor Management Plan. August 12.
- PSI. 2023a. Soil and Groundwater Management and Monitoring Plan. February 23.
- PSI. 2023b. Supplemental Site Assessment Final. February 23.
- PSI. 2023c. Supplemental Site Assessment Report Addendum. May 15.
- PSI. 2023d. Overburden Sample Locations and Approval Tracker Plans. September 1.
- Tetra Tech. 2022. Inorganic Chemical Concentrations in Soils of the District of Columbia Report 1 for Five Soil Types. Prepared for the Department of Energy and Environment. November 4.
- United States Environmental Protection Agency (USEPA). 2023a. Regional Screening Levels. November 2023. Available at: <u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables</u>.
- USEPA. 2023b. Regional Screening Levels (RSLs) User's Guide. May. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide.
- Versar. 2003. Environmental Site Assessment Report. April 7.

Arcadis. Improving quality of life.

		SCALE: 0 20 40 80 feet	
ON	M metro	WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY	
		OFFICE OF CAPITAL PROGRAM DELIVERY ENGA - STRUCTURAL ENGINEERING	
	APPROVED	DATE APPROVED DATE	CONTRACT FQ19144

10.	SCALE	DRAWING NO.	SHEET NO.
	1" = 40'-0"		

)	יוח פו			

NORTHERN BUS DIVISION REPLACEMENT PROPOSED EXCAVATION AND STOCKPILE LOCATION PLAN

FIGURE 2

EXPIRATION DATE:

LICENSE No.

"PROFESSIONAL CERTIFICATION: I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE DISTRICT OF COLUMBIA."

L U G / С Κ Р Е B J Ν S A D Н М KEY PLAN

O N S T R U C T I O

CLA

PROPOSED STOCKPILE AND TANK AREA

9 8

-(7)

6

4

3

2

-1

PROPOSED EXCAVATION AREA

.9 J	K	L	M		N.9 P	Q	R	S	Τ	UV	
			50	'-0"		3 S301					
	50'-0"	50'-0"			50'-0" 	3 0¦-0"	50'-0" 	50'-0" 	50'-0"	15'-0"	
SGSS1 SGSS6	SGSS2 SGSS2 SGSS2	S7 SG5 S	SGSS8 SGSS8 SGSS110	SS9 SG	SS10 -		AREA OF SAN 25' X 50' GRID	IPLING ON SPACING			
SGSS13	• • • • • • • • • • • • • • • • • • •	SGSS	115 	3SS16	SGSS17	SGSS18V			 		25'-0"
SGSS21	SGSS22				SGSS25	SGSS26	SGSS27	3			
	SGSS32			SGSS34		SGSS36	000		SGSS39		11.
SGSS44	O O O O SGSS45	OO OO SGSS46	O O O O SG	O O O O SS47	SGSS12	SGSS49		SGSS51			
		- - [0±0]	0*0		@_@ _		() ×0			SGSS67	
SGSS58	SGSS59	SGSS60	so	SSS61	SGSS62		SGSS64	GESS65			
SGSS73	SGSS74	G G SGSS75		SS76	SGSS77			SGSS80	SGSS81		_1
_ 		- - <u> </u> - - [#] :		0,0	0		0000/3	0+0	9:0		
SGSS87	SGSS88	SGSS89	SGS) \$\$90	SGSS91	SGSS92	SGSS93	SGSS94	SGSS95		SGSS114
			[#]			o * o			[1] [1] [1]		·
SGSS101	SGSS102	SGSS103	s SG	55104	SGSS105	SGSS106	SGSS107	SGSS108			
-50'-0"		50'-0"		'-0"		€ 50 <mark>'-0" →</mark>	50'-0"	50'-0" —	50'-0"	15'-0"	
9 J	K	L	M		N.9 P	Q	R	S		UV	

SCALE: 0 20 40 80 feet M metro WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY CONTRACT N APPROVED APPROVED FQ19144N DATE DATE

NOTE:

1. IMPACT EXTENTS SHOWN ON THIS FIGURE ARE ESTIMATED SHOWN ON THIS FIGURE ARE ESTIMATED AND PROVIDED FOR ILLUSTRATIVE AND PLANNING PURPOSES. THE DISPLAYED EXTENTS DO NOT ACCOUNT FOR EXISTING ON-SITE IMPACTS

NORTHERN BUS DIVISION REPLACEMENT PROPOSED 50-FOOT SAMPLING GRID PLAN FIGURE 3

10.	SCALE	DRAWING NO.	SHEET NO.
	1" = 40'-0"		

)-FOOT (SAMPLING (GRID PLAN SCALE: 0 20 40 80 feet	
			
ON	metro	NASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY	PROF
	APPROVED	APPROVED DATE	
			FQ19144N

1. IMPACT EXTENTS SHOWN ON THIS FIGURE ARE ESTIMATED SHOWN ON THIS FIGURE ARE ESTIMATED AND PROVIDED FOR ILLUSTRATIVE AND PLANNING PURPOSES. THE DISPLAYED EXTENTS DO NOT ACCOUNT FOR EXISTING ON-SITE IMPACTS LOCATED OUTSIDE OF THE BUILDING FOOTPRINT.

2. BEDROCK MAP OVERLAY SHOWN IS FROM PSI (2022) WMATA NORTHERN BUS GARAGE, COMPREHENSIVE SITE ASSESSMENT

0.	SCALE	DRAWING NO.	SHEET NO.
	1" = 40'-0"		

Tables

Arcadis. Improving quality of life.

	DCRBCA [c]						
	Construction Worker	Commerci	ial Worker	USEPA			Selected
	Soil Upto Depth of			Industrial Soil			Analytical
	Construction	Sub-sur	face Soil	Regional	Final Rem	ediation	Laboratory
	Ingestion, Inhalation			Screening	Level	[d]	Method
	(Vanor Emissions and	Indoor	Outdoor	Level [c]			Detection Limit
	Particulates), and Dermal	Inhalation	Inhalation				[e]
Constituent [a.b]	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source	(mg/kg)
Priority Pollutant Metals							
Mercury				12	12	RSL	0.075
Chromium				180,000	180,000	RSL	0.38
Chromium VI				6.3	6.3	RSL	0.38
Copper				4,700	4,700	RSL	0.475
Lead				800	800	RSL	0.115
Nickel				2.200	2.200	RSL	0.38
Zinc				35.000	35.000	RSL	1.85
Antimony				47	47	RSL	0.415
Arsenic [f]				3.0	21	BKGD	0.125
Bervllium				230	230	RSI	0.28
Cadmium				10	10	RSI	0.095
Selenium				580	580	RSI	0.135
Silver				580	580	RSI	0.135
Thallium				1 2	1 2	RSL	0.005
Polychlorinated hinbenyls				1.2	1.2	NJL	0.15
Aroclor (Total)				0.97	0.97	RCI	NΛ
Aroclor (10tal)				5.1	5.1	DCI	0.021
Aroclor 1221				0.02	0.82	DCI	0.031
Aroclor 1222				0.83	0.83	DCI	0.031
Aroclor 1232				0.72	0.72		0.031
Aroclor-1242				0.95	0.95	RSL	0.031
Arocior-1248				0.94	0.94	RSL	0.031
Aroclor-1254				0.97	0.97	RSL	0.031
Arocior-1260				0.99	0.99	KSL	0.031
Arocior-1262					NA		NA
Arocior-1268					NA		NA
1 1 Dishonul				20	20	DCI	NIA
1,1 -Bipnenyi				20	20	RSL	NA
1,2,4,5-Tetrachlorobenzene				3.5	3.5	RSL	NA
2,3,4,6-1 etrachiorophenol				2,500	2,500	RSL	NA
2,4,5-Trichlorophenol				8,200	8,200	RSL	0.004
2,4,6-Trichlorophenol				82	82	RSL	0.0263
2,4-Dichlorophenol				250	250	RSL	0.0263
2,4-Dimethylphenol				1,600	1,600	RSL	0.0317
2,4-Dinitrophenol				160	160	RSL	0.0757
2,4-Dinitrotoluene				7.4	7.4	RSL	0.0233
2,6-Dinitrotoluene				1.5	1.5	RSL	0.0193
2-Chloronaphthalene				6,000	6,000	RSL	0.023
2-Chlorophenol				580	580	RSL	0.0167
2-Methylnaphthalene				300	300	RSL	0.008
2-Methylphenol				4,100	4,100	RSL	0.0183
2-Nitroaniline				800	800	RSL	0.019
2-Nitrophenol					NA		0.0267
3&4-Methylphenol				1,600	1,600	RSL	0.0243
3,3'-Dichlorobenzidine				5.1	5.1	RSL	0.0183
3-Nitroaniline				110	110	RSL	0.0233
4,6-Dinitro-2-methylphenol (4,6 dinitro-o-				6.6	6.6	RSL	0.0397
cresol)							
4-Bromophenyl-phenylether				8.2	8.2	RSL	0.0173
4-Chloro-3-methylphenol (p-chloro-m-				8,200	8,200	RSL	0.029
cresol)				-,===	0,200		5.025
4-Chloroaniline (P-chloroaniline)				11	11	RSL	0.0257
4-Chlorophenyl-phenylether				8.2	8.2	RSL	0.0187
4-Nitroaniline				110	110	RSL	0.0333
4-Nitrophenol					NA		0.0513

Construction Vorker Commercial Worker OSFA Sol Uyto Depth of Construction Sub-urlex Sol OSFA Regional Solution Prival Resmediated Regional Construction Prival Resmediated Regional Solution Prival Resmediated Resmodiat		DCRBCA [c]						
Solution Solution Solution MaddR21 Interston Solution Solution Solution Solution Particulates), and Dermal Induct Induct Solution Solution Constituent [b,b] Implicit Implicit Implicit Implicit Solution Solution Semu-Volution Compands - - 4,500 MagdR21 Solution Implicit Impl		Construction Worker	Commerc	ial Worker	USEPA			Selected
Construction Sub-surface Soil Regranding Indextor Indexto		Soil Upto Depth of			Industrial Soil			Analytical
Instrum Screening Screening Instrum Screening Instrum Screening Instrum Instrum <thinstrum< th=""> Instrum Instrum</thinstrum<>		Construction	Sub-sur	face Soil	Regional	Final Re	mediation	Laboratory
Open transions and Particular b, b) Detection Links Level [1] Constituent [5, b] (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Accnaphtheir Accnaphtheir Accnaphtheir Accnaphtheir 37,100 - - 4,500 HSL 0.0057 Accnaphtheir Accnaphtheir - - 4,500 HSL 0.0057 Accnaphtheir Accomption - - - 4,500 HSL 0.0057 Accomption - - - - 4,500 HSL 0.0057 Accomption - - - - 2,000 HSL 0.0057 Accomption - - - - 2,000 HSL 0.0043 Bernald Hylip - - - 2,000 HSL 0.0043 Bernald Hylip - - - - 2,000 DRIMA 0.0043 Bernald Hylip - - - - 2,000 DRIMA 0.0043		Ingestion Inhalation			Screening	Lev	el [d]	Method
Particulares), and Dormal Instantion Instantion Instantion Instantion Instantion Instantion Semi-Violatile Organic Compounds mm//m2 (mm//m2) (mm//m2) (mm//m2) (mm//m2) (mm//m2) (mm//m2) (mm//m2) Source (mm//m2) Source (mm//m2) Source (mm//m2) (mm//m2) (mm//m2) (mm//m2) (mm//m2) (mm//m2) (mm//m2) Source Source<		(Vanor Emissions and	Indoor	Outdoor	Level [c]			Detection Limit
Constituent 1, b.) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Seures (mg/kg) Accmaphtheire 37,000 - - 4,500 HSL 0.00657 Accmaphtheire - - 1,200 12,000 HSL 0.00657 Accmaphtheire - - 12,000 HSL 0.00657 Accmaphtheire - - - 12,000 HSL 0.00637 Accmaphtheire - - - 10 HSL 0.00431 Accmaphtheire - - - - 20,000 Z1 21 HSL 0.0047 Beracle/hijderanthene 59 23,000 2,000 2,000 Z10 Z1 HSL 0.0047 Beracle/hijderanthene - - - - 2,000 DCRBCA 0.00657 Beracle/hijderanthene 25,000 2,000 2,000 Z1 21 HSL 0.0047 Beracle/hijderanthene <		Particulates), and Dermal	Inhalation	Inhalation				[e]
Semi-Voltale Organic Compounds - - - 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 6.50 0.0057 Accraphthone - - - - 2.200 851 0.0033 Anthracene 186,000 - - - 10 853 0.0043 Artaine - - - 9.50 655 9.000 2.1 2.1 851 0.0047 Beroolghymene 5.9 2.3,000 2.080,000 2.1 2.1 851 0.0007 Beroolghyloramthene 5.9 2.3,000 2.000 2.01 2.1 851 0.0073 Beroolghyloramthene - - - 2.000 2.000 2.000 2.00 851 0.0073 Beroolghyloramthene - - - 1.0 1.0 651 0.00217 Big2 Chinorechrylorthatare - - - <td>Constituent [a.b]</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>Source</td> <td>(mg/kg)</td>	Constituent [a.b]	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source	(mg/kg)
Accampthylene 37,00 4,500 4SL 0.006 Acresphhenone 4,500 45.00 45.00 0.013 Antracene 186,000 12,000 23,000 4SL 0.013 Antracene 186,000 10 10 6SL 0.013 Benciolantriscene 59 485 300,000 211 21 6SL 0.0047 Benciolanyerin 59 3,010 126,000 2.11 21 6SL 0.0067 Benciolanyerin 59 3,010 126,000 2.11 210 6SL 0.0067 Benciolanyerin - - - 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.007 2.00 8.0017 0.005 5.007 0.000 0.00 2.00 8.00 0.007 0.000 5.007 0.0000 0.00 0.00	Semi-Volatile Organic Compounds							
Accenghenpine 2.000 FSL 0.0077 Anthracone 186,000 23,000 FSL 0.0213 Anthracone 186,000 23,000 FSL 0.0213 Bernadelhyde 10 0.0 FSL 0.0013 Bernadelhyde 62.0 2.21 FSL 0.0043 Bernadelhyde 5.9 3.0.00 2.1 2.1 FSL 0.0043 Bernadelhydrene 2.0 - 2.0.00 V.260.000 2.1 2.1 FSL 0.0043 Bernadelhydrene - - 2.0.00 V.260.000 2.10 FSL 0.0017 Bistychorothoxymethane - 1.0 TSL 0.0017 Bistychorothoxymethane - 1.00 TSL 0.0017 Bistychorothoxymethane - 1.0	Acenaphthene	37,100			4,500	4,500	RSL	0.006
Actophone1,00012,000RSL0.0013Arraine23,000RSL0.0043ArraineRSU0.0013BenzaldehydeRSU0.0013BenzaldehydeSSSSOSSORSU0.0013BenzaldehydeSSORSU0.00130.00130.0013BenzaldehydeSSO20,0002.12.1RSU0.0013BenzaldehyderantheneSSO20,0002.12.1RSU0.0013BenzaldehyderantheneSSO20,0002.102.10RSU0.0013BenzaldehyderantheneSSO2.0002.00C.21.0RSU0.0013Benzaldehyderanthene2.00RSU0.0013Benzaldehyderanthene1.01.0RSU0.0013Benzaldehyderanthene1.01.0RSU0.0013Benzaldehyderanthene1.001.0RSU0.0013Benzaldehyderanthene1.001.0RSU0.0013Benzaldehyderanthene1.001.0RSU0.0013Benzaldehyderanthene1.001.0RSU0.0013Benzaldehyderanthene1.00RSU0.0013BenzaldehyderantheneNA <td>Acenaphthylene</td> <td></td> <td></td> <td></td> <td>4,500</td> <td>4,500</td> <td>RSL</td> <td>0.0057</td>	Acenaphthylene				4,500	4,500	RSL	0.0057
Anthracene186,00023,000RSL0.0043Bernzdjehrhyde820RSLNABernzdjehrhycene5968580002.12.1RSL0.0033Bernzdjehrhynene592,0002.12.1RSL0.0043Bernzdjehrhynene20,0002.0000.006Bernzdjehrhynene592,0002.0002.0002.0002.0002.0000.003Bernzdjehrhynene5802,50002.040,0002.10RSL0.0033Bernzdjehrhyneny2.000.008.50.0013Bidz Choroethoxy)nethane1.01.0RSL0.0013Bidz Choroethoxy)nethane1.01.0RSL0.0023Bidz Choroethoxy)phthalate4.0004.000RSL0.0217Dienzofghalperk4.0004.000RSL0.0217Dienzofghalperk4.0004.000RSL0.0013Dienzofghalperk4.0004.000RSL0.0021Dienzofghalperk4.0004.000RSL0.013Dienzofghalperk3.000RSL0.0033.001RSL0.013Dienzofghalperk3.000RSL0.0033.001RSL0	Acetophenone				12,000	12,000	RSL	0.0213
Atraine1010RSL0.0167Benxaldehyde8200RSL0.0167Benxaldehyde5930.0002121RSL0.0333Benxaldehyde5932,0002.080,0002121RSL0.0343Benxaldehyde5922,0002.040,000210RSL0.0067Bencol,hiurantene5922,0002.040,000210RSL0.0073Bipheryl (lopheryl)2020RSL0.0177bis/2-Chrotorbonylmethane1.01.0RSL0.0033Bipheryl (lopheryl)1.01.0RSL0.0033bis/2-Chrotorbonylmethane1.01.0RSL0.0035bis/2-Chrotorbonylmethane1.001.00RSL0.0127bis/2-Chrotorbonylmethane1.001.00RSL0.0126Chrosole1.001.00RSL0.0126Chrosole1.001.00RSL0.0126Chrosole1.001.00RSL0.0126Chrosole1.001.00RSL0.0126Chrosole1.001.00RSL0.0126Chrosole2.102.00RSL0.0126Chrosole2.00RSL0.00	Anthracene	186,000			23,000	23,000	RSL	0.0043
Benck alenthydeR20R31NABenck [anthrace5968530.00126.0002.112.1RS10.0033Benck [anthrace592,0002,080,0002.12.1RS10.0047Benck [anthrace592,0002,080,0002.10RS10.0047Benck [anthrace58025,0002,040,0002.10RS10.0073Benck [anthrace58025,0002,040,0002.10RS10.0073Benck [anthrace2.20RS10.0217bis [2-Choroethydy]hether1.01.0RS10.0043bis [2-Choroethydy]hether1.01.0RS10.0033Barybeny [hthalate1.01.00RS10.003Barybeny [hthalate1.00RS10.003Barybeny [hthalate1.00RS10.0043Dientog h.Janthracene5,78014,1005,220,0002,100RS10.0043Dientog h.Janthracene1.00RS10.0037Dientog h.Janthracene1.00RS10.0037Dientog h.Janthracene6,00066,000RS10.0133Dientog h.Janthracene6,00066,000RS10.0133Dientog h.Janthracene3,0003,000RS10.0037 <t< td=""><td>Atrazine</td><td></td><td></td><td></td><td>10</td><td>10</td><td>RSL</td><td>0.0167</td></t<>	Atrazine				10	10	RSL	0.0167
Bend algembrace 59 685 300.000 21 21. Rsl. 0.0333 Benzol japuron 59 23,000 2,080,000 21 21. Rsl. 0.0047 Benzol japuron 59 23,000 2,080,000 210 Rsl. 0.0061 Benzol japuron 50. 2,5000 2,040,000 210 Rsl. 0.0073 Bipheryl (Dipheryl) - - 20 20. Rsl. 0.0171 Bis/2 Chronsthynymethane - - 1.0 1.0 Rsl. 0.0035 Bis/2 Chronsthynymethane - - 1.0 1.0 Rsl. 0.0035 Bis/2 Chronsthynymethanate - - 1.0 1.0 Rsl. 0.003 Bis/2 Chronsthynymethanate - - 1.0 1.0 Rsl. 0.003 Bis/2 Chronsthynymethanate - - 1.0 1.0 Rsl. 0.012 Din-nochynhatae - - 1.0 1.0 <t< td=""><td>Benzaldehyde</td><td></td><td></td><td></td><td>820</td><td>820</td><td>RSL</td><td>NA</td></t<>	Benzaldehyde				820	820	RSL	NA
Benxa[ja]prene 5.9 3,010 126,000 2.1 2.1 RSL 0.0047 Benxa[ja]fuoranthene 5.9 23,000 2,000 2.0 2.0 RSL 0.0043 Benxa[ja]fuoranthene 580 25,000 2.00 2.0 RSL 0.0073 Benxa[ja]fuoranthene 2.00 2.0 RSL 0.0073 Bis/2-Chitorethoxymethane 2.00 2.0 RSL 0.0043 bis/2-Chitorethynythethane 1.0 1.0 RSL 0.0043 bis/2-Chitorethynythethane 1.00 1.00 RSL 0.0043 bis/2-Chitorethynythethane 1.00 1.00 RSL 0.0033 Burytennythythanae 1.00 RSL 0.0043 Dienotaja.janthracene 1.00 4.0007 0.006 RSL 0.0057 Dienotajanthate <t< td=""><td>Benzolalanthracene</td><td>59</td><td>685</td><td>300.000</td><td>21</td><td>21</td><td>RSL</td><td>0.0333</td></t<>	Benzolalanthracene	59	685	300.000	21	21	RSL	0.0333
Benzolp/filouranthene 59 23,000 2.080,000 21 21 PSL 0.0043 Benzolp/filouranthene 580 2.5,000 2.040,000 210 210 PSL 0.0073 Biphenyl (Diphenyl) 200 PSL 0.0073 Biphenyl (Diphenyl) 200 PSL 0.0073 BipL2-Chronosponylether 1.0 1.0 RSL 0.0033 Butylbernyl/phthalate 1.00 1.00 RSL 0.0021 Butylbernyl/phthalate 1.00 1.00 RSL 0.0021 Chrosene 5.780 1.4,100 5.230,000 2.100 RSL 0.004 Dibenzofuran 1.200 RSL 0.0021 Dibenzofuranthene 2.1 2.1 RSL 0.0021 Dibenzofuranthene 2.10 12.0 RS	Benzo[a]pvrene	5.9	3.010	126.000	2.1	2.1	RSL	0.0047
Benolg, hiperylene 20,200 20,200 DCR6A 0.006 Benolg, hiperylene 560 25,000 2,040,000 210 210 RSL 0.0073 Benolg, hiperyl (Depreding) 220 RSL 0.0017 bisl2-Choroethoxylmethane 220 RSL 0.0017 bisl2-Choroethoxylmethane 1.0 1.0 RSL 0.003 bisl2-Choroethoxylmethane 1.0 1.0 RSL 0.005 bisl2-Choroethoxylphthalate 1.0 1.0 RSL 0.005 bisl2-Choroethoxylphthalate 1.00 1.00 RSL 0.001 bibenolg, hiphthalate 1.21 RSL 0.001 bibenolg, hiphthalate 8,200 RSL 0.013 bibenolg, hiphthalate	Benzo[b]fluoranthene	59	23.000	2.080.000	21	21	RSL	0.0043
Benzolk/flurnamene S80 25,000 2,040,000 210 R5L 0.0073 Biphenyl (Diphenyl) 20 R5L 0.0171 Biphenyl (Diphenyl) 200 R5L 0.0073 Biphenyl (Diphenyl) 200 R5L 0.0073 Bis/2-Chorostonyplether 1.0 1.0 R5L 0.0003 Bis/2-Chorostonyplether 1.00 R5L 0.0023 Bis/2-Chorostonyplether 1.00 R5L 0.0026 Carbazole NA 0.026 Chrysene 5.780 14,100 5.230,000 2,100 R5L 0.0021 Dientorlyphthalate 120 120 R5L 0.0026 Dientorlyphthalate 120 120 R5L 0.0033 Dientorlyphthalate 8,000 R5L </td <td>Benzo[g,h,i]pervlene</td> <td>20,200</td> <td></td> <td></td> <td></td> <td>20,200</td> <td>DCRBCA</td> <td>0.006</td>	Benzo[g,h,i]pervlene	20,200				20,200	DCRBCA	0.006
Biphenyi (Diphenyi) 20 RSL 0.0177 bisl2-Chiorethoxymethane 250 RSL 0.0217 bisl2-Chiorethoxymethane 1.0 1.0 RSL 0.003 bisl2-Chiorethoxymethane 1.00 1.00 RSL 0.003 bisl2-Chiorethoxymethane 1.00 1.00 RSL 0.023 bisl2-Chiorethoxymethalate 1.200 RSL 0.012 Caprolactam NA 0.026 0.012 0.00 RSL 0.012 Chrysene 5.780 14,100 5.230,000 2,100 RSL 0.012 Diehorobinyforthalate 1.20 RSL 0.012 Diehorobinyforthalate 1.20 RSL 0.013 Diehorobinyforthalate 8,200 RSL 0.003 Diehos	Benzo[k]fluoranthene	580	25,000	2.040.000	210	210	RSI	0.0073
bis/2-Chiorethoy/methane 250 RSL 0.0217 bis/2-Chiorethy/pither 1.0 1.0 RSL 0.0083 bis/2-Chiorstory/pither 1.00 1.00 RSL 0.0021 bis/2-Chiorstory/pither 1.00 1.00 RSL 0.0023 bis/2-Chiorstory/pither 1.00 1.00 RSL 0.012 Caprolactam NA 0.026 Chrysene 5.780 14,100 5,230,000 2,100 200 RSL 0.0012 Dihenzofuran 1.20 120 RSL 0.002 Dienty/phthalate 66,000 RSL 0.0123 Din-etylphthalate (Dibrophthalate 8,200 RSL 0.0173 Din-etylphthalate (Dibrophthalate 3,000 RSL 0.0037 Din-etylphthalate (Dibrophthalate 3,000 RSL	Biphenyl (Diphenyl)				20	20	RSI	0.0177
bisl2-Chlorosethyljether 1.0 RSI 0.0043 bisl2-Chloroseproyljether 1.0 1.0 RSI 0.0043 bisl2-Chloroseproyljether 1.00 1.00 RSI 0.023 Butylenzylphthalate 1.200 RSI 0.012 Carbazole NA 0.026 Chrysene 5.780 14,100 5.230,000 2,100 RSI 0.004 Diberozia,li-plathtracene NA 0.026 Dibertylphthalate 1.20 RSI 0.0193 Diethylphthalate 1.20 RSI 0.0193 Diethylphthalate 8.20 RSI 0.012 Diethylphthalate 3.000 3.00 RSI 0.0037 Pluorent 24,800 3	bis(2-Chloroethoxy)methane				250	250	RSI	0.0217
basis - - - - - 1.0 RSL 0.0005 bis(2-third)sprop/lether 1.0 RSL 0.023 bis(2-third)sprop/lether 1.200 RSL 0.023 bis(2-third)sprop/lether 40.000 RSL 0.023 Carbazole 40.000 RSL 0.004 Carbazole 40.000 RSL 0.004 Diensofuran 2.10 RSL 0.0033 Diensofuran 66.000 RSL 0.012 Dien-butylphthalate 66.000 RSL 0.0133 Dien-octylphthalate (Dien-octyl phthalate) 8.200 RSL 0.0037 Fluorente 24.800 3.000 RSL 0.0037 Fluorenthe 3.000 <	his(2-Chloroethyl)ether				1.0	1.0	RSI	0.0043
basic structure instructure	his(2-Chloroisonronyl)ether				1.0	1.0	RSI	0.005
Disk upplicipation	his(2-Ethylbeyyl)nhthalate				160	160	RSI	0.003
Dury but hybricitation	Butylbenzylobthalate				1 200	1 200	RSI	NΔ
Carbon Construction Carbon Construction <thcarbon construction<="" th=""> Carbon Construction</thcarbon>	Canrolactam				40,000	40.000	RSI	0.012
Chrysene 5,780 14,100 5,230,000 2,100 RSL 0.004 Dibenzo[a,h]anthracene 2.1 2.1 RSL 0.0057 Dibenzo[a,h]anthracene 120 120 RSL 0.0193 Dichtylphthalate 66,000 RSL 0.0193 Din-butylphthalate (Din-octyl phthalate) 66,000 RSL 0.012 Din-octylphthalate (Din-octyl phthalate) 8,200 8,200 RSL 0.012 Fluorene 24,800 3,000 3,000 RSL 0.0037 Fluorene 24,800 3,000 3,000 RSL 0.0057 Hexachlorobenzene 3,000 3,000 RSL 0.0057 Hexachlorocyclopentadiene 3,000 3,000 RSL 0.0037 Isophorone 8,0 8,0<	Carbazole					40,000 ΝΔ	NJL	0.012
Jan Sale Jack Sale Jack Sale Jack Sale Jack Sale Jack Sale Jack Sale Dihenzo Jan Jan Sale 2.1 2.1 RSL 0.0057 Dihenzo Jan Jan Sale 120 RSL 0.0193 Dihenzo Jan Jan Sale 66,000 RSL 0.0193 Din-butylphthalate 8,200 RSL 0.0173 Din-octylphthalate (Din-octyl phthalate) 8,200 RSL 0.012 Fluorene 24,800 3,000 RSL 0.0037 Fluorene 24,800 3,000 RSL 0.0063 Hexachlorobutadiene 5.3 5.3 RSL 0.0063 Hexachlorobutadiene 5.3 S.3 RSL 0.0077 Ibexachlorobutadiene 2.1 2.1 RSL 0.0213 Indeno[1,2,3	Chrysene	5 780	1/1 100	5 230 000	2 100	2100	PCI	0.020
Distribution - - - 1.1 1.1.1 <th1.1.1< th=""> 1.1.1 <th1.1.1< t<="" td=""><td>Dihenzo[a h]anthracene</td><td>5,780</td><td>14,100</td><td>5,250,000</td><td>2,100</td><td>2100</td><td>RSI</td><td>0.004</td></th1.1.1<></th1.1.1<>	Dihenzo[a h]anthracene	5,780	14,100	5,250,000	2,100	2100	RSI	0.004
Distribution Image of the second	Dibenzofuran				120	120	RSI	0.0037
Dimethylphthalate 66,000 RSL 0.0193 Din-butylphthalate (Dibutyl Phthalate) 8,200 RSL 0.0173 Din-octylphthalate (Din-octyl phthalate) 8,200 8,200 RSL 0.0037 Fluoranthene 24,800 3,000 3,000 RSL 0.0057 Hexachlorobutadiene 3,000 3,000 RSL 0.0057 Hexachlorobutadiene - 5.3 5.3 RSL 0.019 Hexachlorobutadiene - 0.56 0.96 RSL 0.0057 Hexachlorobutadiene - 0.53 S.3 RSL 0.0019 Hexachlorobutadiene - 0.53 S.3 RSL 0.0213 Indeno[1,2,3-cd]pyrene 2,400 2,400 RSL 0.022 Naphthalene 4,160 1.3 848	Diethylphthalate				66,000	66,000	RSI	0.02
Din-butylphthalate Din-but	Dimethylphthalate				66,000	66,000	RSI	0.02
Din-butylphthalate (Dibutyl Phthalate) 8,200 8,200 RSL 0.0173 Din-octylphthalate (Din-octyl phthalate) 820 820 RSL 0.012 Fluoranthene 24,800 3,000 3,000 RSL 0.0037 Fluorene 24,800 3,000 3,000 RSL 0.0057 Hexachlorobenzene 0.96 0.96 RSL 0.0053 Hexachlorocyclopentadiene 0.75 RSL 0.031 Hexachlorocyclopentadiene 8.0 8.0 RSL 0.021 Indeno[1,2,3-cd]pyrene 8.0 8.0 RSL 0.022 Naphthalene 4,160 1.3 848 8.6 1.3 DCRBCA 0.000 Nitrosodiphenylamine 0.33 0.33 RSL 0.012 Phenol	Diffettiyipittididee				00,000	00,000	NJL	0.0155
Din-noctylphthalate (Din-octyl phthalate) 820 820 RSL 0.012 Fluoranthene 24,800 3,000 3,000 RSL 0.0037 Fluorene 24,800 3,000 3,000 RSL 0.0063 Hexachlorobenzene 0.75 0.75 RSL 0.012 Hexachlorocyclopentadiene 0.75 0.75 RSL 0.021 Hexachlorocyclopentadiene 0.75 0.75 RSL 0.021 Indeno[1,2,3-cd]pyrene 2.1 RSL 0.021 Sophorone 2.400 2.400 RSL 0.022 Naphthalene 4,160 1.3 848 8.6 1.3 DCRBCA 0.003 Nitrosodi-n-propylamine 2.400 2.400 RSL 0.011 Phenol 4.70 RSL 0.010	Di-n-butylphthalate (Dibutyl Phthalate)				8,200	8,200	RSL	0.0173
Fluoranthene 24,800 3,000 3,000 RSL 0.0037 Fluorene 24,800 3,000 RSL 0.0057 Hexachlorobutadiene 0.96 0.96 RSL 0.0063 Hexachlorobutadiene 5.3 RSL 0.019 Hexachlorocyclopentadiene 0.75 0.75 RSL 0.031 Indeno[1,2,3-cd]pyrene 0.75 0.75 RSL 0.021 Indeno[1,2,3-cd]pyrene 2,400 RSL 0.022 Naphthalene 4,160 1.3 848 8.6 1.3 DCRBCA 0.006 Nitrobenzene 2.2 2.2 RSL 0.021 Nitrobenzene 0.33 RSL 0.003 Nitrobenzene 2.400 KSL 0.0043 Phenathrene	Di-n-octylphthalate (Di-n-octyl phthalate)				820	820	RSL	0.012
Fluorene24,8003,0003,000RSL0.0057Hexachlorobenzene0.960.96RSL0.0063Hexachlorobytadiene0.755.3S.3RSL0.019Hexachlorocyclopentadiene0.75RSL0.03Hexachlorocyclopentadiene0.75RSL0.0213Indeno[1,2,3-cd]pyrene2.12.1RSL0.0077Isophorone2.4002.400RSL0.0021Naphthalene4,1601.38488.61.3DCRBCA0.005Nitrobenzene0.330.33RSL0.002N-Nitrosodiphenylamine4.07470RSL0.004Phenahtrene20,2002.3002.5000RSL0.004Phenol2.3002.5000RSL0.004Phenol2.3002.5000RSL0.004Phenol1.60.053.23.23.2Diesel Range Organics1.040,000,000376229,000 [g]NANAJ.12-Trichlorocthane2.600RSL0.004J.12-Trichlorocthane2.600RSL0.0004J.12-Trichlorocthane2.600RSL0.0004J.12	Fluoranthene	24,800			3,000	3,000	RSL	0.0037
Hexachlorobenzene 0.96 0.96 RSL 0.0063 Hexachlorocyclopentadiene 5.3 5.3 RSL 0.019 Hexachlorocyclopentadiene 0.75 RSL 0.031 Hexachlorocyclopentadiene 0.75 RSL 0.021 Inden0[1,2,3-cd]pyrene 8.0 8.0 RSL 0.007 Isophorone 2,400 2,400 RSL 0.002 Naphthalene 4,160 1.3 848 8.6 1.3 DCRBCA 0.005 Nitrobenzene 2,400 2,400 RSL 0.002 Nitrobenzene 0.33 RSL 0.003 NNItrosodin-nyropylamine 4.0 4.0 RSL 0.0043 Phenathfrene 20.200 20.200 CRBCA 0.05 Phenol </td <td>Fluorene</td> <td>24,800</td> <td></td> <td></td> <td>3,000</td> <td>3,000</td> <td>RSL</td> <td>0.0057</td>	Fluorene	24,800			3,000	3,000	RSL	0.0057
Hexachlorocyclopentadiene 5.3 5.3 RSL 0.019 Hexachlorocyclopentadiene 0.75 0.75 RSL 0.03 Hexachlorocyclopentadiene 0.75 0.75 RSL 0.03 Hexachlorocyclopentadiene 8.0 8.0 RSL 0.0017 Indeno[1,2,3-cd]pyrene 2.400 2.400 RSL 0.0021 Indeno[1,2,3-cd]pyrene 2.400 2.400 RSL 0.0021 Naphthalene 4.160 1.3 848 8.6 1.3 DCRBCA 0.0006 Nitroso-din-propylamine 0.33 0.33 RSL 0.013 Phenanthrene 20,200 4.0 4.0 RSL 0.004 Phyrene 18600 2.5000 2.500 RSL 0.004 Diesel Range Organics 1,040,000,000 376	Hexachlorobenzene				0.96	0.96	RSL	0.0063
Hexachlorocyclopentadiene 0.75 0.75 RSL 0.03 Hexachloroethane 8.0 8.0 RSL 0.0213 Indencj1,2,3-cd]pyrene 2.1 2.1 RSL 0.0077 Isophorone 2.400 RSL 0.006 Naphthalene 4.160 1.3 848 8.6 1.3 DCRBCA 0.006 Nitrobenzene 2.2 2.2 RSL 0.003 N-Nitrosodiphenylamine 0.33 0.33 RSL 0.003 N-Nitrosodiphenylamine 470 470 RSL 0.01 Pentachlorophenol 470 2.00 DCRBCA 0.003 Phenol 2.000 DCRBCA 0.004 0.004 Disel Range Organics 1.040,000,000 376 2.90,000 [g]	Hexachlorobutadiene				5.3	5.3	RSL	0.019
Hexachloroethane 8.0 8.0 RSL 0.0213 Indeno[1,2,3-cd]pyrene 21 21 RSL 0.0077 Isophorone 2,400 2,400 RSL 0.022 Naphthalene 4,160 1.3 848 8.6 1.3 DCRBCA 0.006 Nitrobenzene 2.2 2.2 RSL 0.025 N-Nitroso-din-propylamine 4.0 4.0 RSL 0.006 N-Nitroso-din-propylamine 470 470 RSL 0.011 Pentachlorophenol 4.0 4.0 RSL 0.0043 Phenol 25,000 RSL 0.0043 0.024 Pyrene 18,600 25,000 RSL 0.024 Disel Range Organics 1,040,000,000 376 229,000 [g] NA NA	Hexachlorocyclopentadiene				0.75	0.75	RSL	0.03
Indeno[1,2,3-cd]pyrene 21 RSL 0.0077 Isophorone 2,400 RSL 0.022 Naphthalene 4,160 1.3 848 8.6 1.3 DCR8CA 0.0006 Nitrobenzene 22 22 RSL 0.025 N-Nitroso-di-n-propylamine 0.33 0.33 RSL 0.003 N-Nitroso-di-n-propylamine 4.70 470 RSL 0.017 Pentachlorophenol 4.00 4.0 RSL 0.013 Phenol 4.0 4.0 RSL 0.0403 Pyrene 18,600 25,000 RSL 0.024 Gasoline Range Organics 1,040,000,000 376 229,000 [g] 376 DCR8CA 0.05 Diesel Range Organics 1,040,000,000 376 229,000 [g] NA NA Volatile Organic Compounds [g,600 DCRBCA<	Hexachloroethane				8.0	8.0	RSL	0.0213
Isophorone 2,400 2,400 RSL 0.022 Naphthalene 4,160 1.3 848 8.6 1.3 DCRBCA 0.0006 Nitrobenzene 22 22 RSL 0.025 N-Nitroso-di-n-propylamine 0.33 0.33 RSL 0.003 N-Nitrosodiphenylamine 470 470 RSL 0.01 Pentachlorophenol 4.0 4.0 RSL 0.0403 Phenol 25,000 RSL 0.024 0.043 Pyrene 18,600 2,300 RSL 0.024 Pyrene 18,600 2,300 2,300 RSL 0.024 Diesel Range Organics 1,040,000,000 376 229,000 [g] 376 DCRBCA 3.2 Total Petroleum Hydrocarbons - [g] NA NA	Indeno[1,2,3-cd]pyrene				21	21	RSL	0.0077
Naphthalene 4,160 1.3 848 8.6 1.3 DCRBCA 0.0006 Nitrobenzene 22 22 RSL 0.025 N-Nitroso-di-n-propylamine 0.33 0.33 RSL 0.003 N-Nitrosodiphenylamine 470 470 RSL 0.01 Pentachlorophenol 470 4.0 RSL 0.0403 Phenanthrene 20,200 20,200 CRECA 0.0043 Pyrene 18,600 25,000 25,000 RSL 0.024 Pyrene 18,600 2,300 2,300 RSL 0.0043 Diesel Range Organics 1,040,000,000 376 229,000 [g] 376 DCRBCA 3.2 Diesel Range Organics 1,040,000,000 376 229,000 [g] NA NA 1,1,1-Trichloroethane [g]<	Isophorone				2,400	2,400	RSL	0.022
Nitrobenzene 22 22 RSL 0.025 N-Nitroso-di-n-propylamine 0.33 0.33 RSL 0.003 N-Nitrosodiphenylamine 470 470 RSL 0.01 Pentachlorophenol 4.0 4.0 RSL 0.0403 Phenanthrene 20,200 4.0 4.0 RSL 0.0043 Phenol 25,000 RSL 0.024 Pyrene 18,600 2,300 2,300 RSL 0.0043 Total Petroleum Hydrocarbons 2,300 RSL 0.005 Diesel Range Organics 1,040,000,000 376 229,000 [g] 376 DCRBCA 0.05 Diesel Range Organics 1,04,000,0000 376 229,000 [g] NA NA Volatile Organic Compounds [g] NA	Naphthalene	4,160	1.3	848	8.6	1.3	DCRBCA	0.0006
N-Nitroso-di-n-propylamine 0.33 0.33 RSL 0.003 N-Nitrosodiphenylamine 470 470 RSL 0.01 Pentachlorophenol 4.0 4.0 RSL 0.0403 Phenanthrene 20,200 20,200 DCRBCA 0.005 Phenol 25,000 RSL 0.0043 Pyrene 18,600 2,300 RSL 0.0043 Total Petroleum Hydrocarbons 2,300 RSL 0.024 Diesel Range Organics 1,040,000,000 376 229,000 Ig 376 DCRBCA 0.05 Diesel Range Organics 127,000,000 14,600 8,890,000 Ig 14,600 NA NA Volatil Organic Compounds 3,600 S,600 S,600 S,600 S,600 1,0,0004 1,1,2-Trichloroethane <t< td=""><td>Nitrobenzene</td><td></td><td></td><td></td><td>22</td><td>22</td><td>RSL</td><td>0.025</td></t<>	Nitrobenzene				22	22	RSL	0.025
N-Nitrosodiphenylamine 470 470 RSL 0.01 Pentachlorophenol 4.0 4.0 RSL 0.0403 Phenanthrene 20,200 4.0 4.0 RSL 0.0403 Phenol 20,200 RSL 0.024 0.024 Pyrene 18,600 2,300 2,300 RSL 0.0043 Total Petroleum Hydrocarbons 2,300 2,300 RSL 0.005 Diesel Range Organics 1,040,000,000 376 229,000 [g] 376 DCRBCA 3.2 Total Petroleum Hydrocarbons [g] NA NA NA Volatile Organic Compounds [g] NA NA NA 1,1,2-Trichloroethane [g] NA NA NA 1,2,2-Trichloroethane 2,800 2,800<	N-Nitroso-di-n-propylamine				0.33	0.33	RSL	0.003
Pentachlorophenol 4.0 4.0 RSL 0.0403 Phenanthrene 20,200 20,200 DCRBCA 0.005 Phenol 25,000 25,000 RSL 0.024 Pyrene 18,600 2,300 2,300 RSL 0.0043 Total Petroleum Hydrocarbons 2,300 2,300 RSL 0.0043 Diesel Range Organics 1,040,000,000 376 229,000 [g] 376 DCRBCA 3.2 Total Petroleum Hydrocarbons [g] NA NA Volatile Organic Compounds [g] NA NA 1,1,2-Trichloroethane 3,600 3,600 RSL 0.0004 1,1,2-Trichloroethane 2,800 2,800 RSL NA 1,1,2-Trichloroethane -	N-Nitrosodiphenylamine				470	470	RSL	0.01
Phenanthrene 20,200 20,200 DCRBCA 0.005 Phenol 25,000 RSL 0.024 Pyrene 18,600 2,300 2,300 RSL 0.0043 Total Petroleum Hydrocarbons 2,300 1000 0.05 Diesel Range Organics 1,040,000,000 376 229,000 14,600 DCRBCA 0.05 Diesel Range Organics 127,000,000 14,600 8,890,000 14,600 DCRBCA 3.2 Total Petroleum Hydrocarbons NA NA Volatile Organic Compounds NA NA NA <	Pentachlorophenol				4.0	4.0	RSL	0.0403
Phenol 25,000 RSL 0.024 Pyrene 18,600 2,300 RSL 0.0043 Total Petroleum Hydrocarbons 2,300 RSL 0.0043 Gasoline Range Organics 1,040,000,000 376 229,000 [g] 376 DCRBCA 0.05 Diesel Range Organics 127,000,000 14,600 8,890,000 [g] NA NA Total Petroleum Hydrocarbons [g] NA NA Volatile Organic Compounds [g] NA NA 1,1,2-Trichloroethane 2.7 2.7 RSL 0.0006 1,1,2-Trichloroethane 2.800 2.800 RSL NA 1,1,2-Trichloroethane 2.800 2.800 RSL NA 1,1,2-Trichloroethane	Phenanthrene	20,200				20,200	DCRBCA	0.005
Pyrene 18,600 2,300 RSL 0.0043 Total Petroleum Hydrocarbons	Phenol				25,000	25,000	RSL	0.024
Total Petroleum Hydrocarbons Gasoline Range Organics 1,040,000,000 376 C29,000 [g] 376 DCRBCA 0.05 Diesel Range Organics 127,000,000 14,600 8,890,000 [g] 14,600 DCRBCA 3.2 Total Petroleum Hydrocarbons [g] NA NA Volatile Organic Compounds 1,1,1-Trichloroethane 3,600 RSL 0.0004 1,1,2-Trichloroethane 2.7 2.7 RSL 0.0006 1,1,2-Trichloroethane 2,800 RSL NA 1,1,2-Trichloroethane 2,800 RSL NA 1,1,2-Trichloroethane 0.63 RSL 0.0003 1,1-Dichloroethane 16 16 RSL 0.0004	Pyrene	18,600			2,300	2,300	RSL	0.0043
Gasoline Range Organics 1,040,000,000 376 229,000 [g] 376 DCRBCA 0.05 Diesel Range Organics 127,000,000 14,600 8,890,000 [g] 14,600 DCRBCA 3.2 Total Petroleum Hydrocarbons [g] NA NA Volatile Organic Compounds [g] NA NA 1,1,2-Trichloroethane 3,600 RSL 0.0004 1,2,2-Tetrachloroethane 2.7 2.7 RSL 0.0006 1,1,2-Trichloroethane 2,800 RSL NA 1,1,2-Trichloroethane 0.63 RSL 0.0003 1,1,2-Trichloroethane 0.63 RSL 0.0003 1,1,2-Trichloroethane 16 16 RSL 0.0004	Total Petroleum Hydrocarbons							
Diesel Range Organics 127,000,000 14,600 8,890,000 [g] 14,600 DCRBCA 3.2 Total Petroleum Hydrocarbons [g] NA NA Volatile Organic Compounds [g] NA NA Volatile Organic Compounds [g] NA NA 1,1,1-Trichloroethane 3,600 RSL 0.0004 1,2,2-Tetrachloroethane 2.7 2.7 RSL 0.0006 1,1,2-Trichloroethane 2,800 RSL NA 1,1,2-Trichloroethane 0.63 0.63 RSL 0.0003 1,1,2-Trichloroethane 16 16 RSL 0.0004	Gasoline Range Organics	1,040,000,000	376	229,000	[g]	376	DCRBCA	0.05
Total Petroleum Hydrocarbons Image: Bar Stress of Stre	Diesel Range Organics	127,000,000	14,600	8,890,000	[g]	14,600	DCRBCA	3.2
Volatile Organic Compounds 3,600 3,600 RSL 0.0004 1,1,2-Trichloroethane 2.7 2.7 RSL 0.0006 1,1,2-Trichloroethane 2,800 RSL NA 1,1,2-Trichloroethane 2,800 RSL NA 1,1,2-Trichloroethane 0.63 RSL 0.0003 1,1,2-Trichloroethane 16 16 RSL 0.0004	Total Petroleum Hydrocarbons				[g]	NA		NA
1,1,1-Trichloroethane 3,600 RSL 0.0004 1,1,2,2-Tetrachloroethane 2.7 2.7 RSL 0.0006 1,1,2,2-Trichloro-1,2,2-trifluoroethane 2.800 RSL NA 1,1,2-Trichloroethane 0.63 0.63 RSL 0.0003 1,1,2-Trichloroethane 16 16 RSL 0.0003	Volatile Organic Compounds				-07			
1,1,2,2-Tetrachloroethane2.72.7RSL0.00061,1,2-Trichloro-1,2,2-trifluoroethane2,8002,800RSLNA1,1,2-Trichloroethane0.630.63RSL0.00031,1-Dichloroethane1616RSL0.0004	1,1,1-Trichloroethane				3,600	3,600	RSL	0.0004
1,1,2-Trichloro-1,2,2-trifluoroethane 2,800 RSL NA 1,1,2-Trichloroethane 0.63 0.63 RSL 0.003 1,1-Dichloroethane 16 16 RSL 0.004	1,1,2,2-Tetrachloroethane				2.7	2.7	RSL	0.0006
1,1,2-Trichloroethane 0.63 RSL 0.0003 1,1-Dichloroethane 16 16 RSL 0.0004	1,1,2-Trichloro-1,2,2-trifluoroethane				2,800	2,800	RSL	NA
1,1-Dichloroethane 16 16 RSL 0.0004	1,1,2-Trichloroethane				0.63	0.63	RSL	0.0003
	1,1-Dichloroethane				16	16	RSL	0.0004

	DCRBCA [c]							
	Construction Worker	Commerc	ial Worker	USEPA			Selected	
	Soil Upto Depth of			Industrial Soil	Final Damadiation		Analytical	
	Construction	Sub-sur	face Soil	Regional	Final Kerr	ediation	Laboratory	
	Ingestion, Inhalation			Screening	Leve	[a]	Niethod	
	(Vapor Emissions and	Indoor	Outdoor	Level [c]			Detection Limit	
	Particulates), and Dermal	Inhalation	Inhalation				[e]	
Constituent [a,b]	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source	(mg/kg)	
Volatile Organic Compounds								
1,1-Dichloroethene				100	100	RSL	0.0004	
1,2,3-Trichlorobenzene				93	93	RSL	0.0005	
1,2,4-Trichlorobenzene				26	26	RSL	0.0005	
1,2-Dibromo-3-chloropropane				0.064	0.064	RSL	0.0009	
1,2-Dibromoethane	18	0.0020	1.5	0.16	0.0020	DCRBCA	0.0005	
1,2-Dichlorobenzene				930	930	RSL	0.0004	
1,2-Dichloroethane	304	0.016	10	2.0	0.016	DCRBCA	0.0004	
1,2-Dichloropropane				6.6	6.6	RSL	0.0005	
1,3-Dichlorobenzene				11	11	RSL	0.0005	
1,4-Dichlorobenzene				11	11	RSL	0.0009	
1,4-Dioxane				24	24	RSL	NA 0.0022	
				19,000	19,000	RSL	0.0023	
2-Hexanone				130	130	KSL	0.0007	
4-Methyl-2-pentanone (Methyl Isobutyl				14,000	14,000	RSL	0.0006	
Asstance				110 000	110 000	DCI	0.011	
Renzono				5 1	0.024		0.011	
Bromochloromethane	091	0.034	21	53	63	RCI	0.0004	
Bromodichloromethane				13	13	RSI	0.0003	
Bromoform				86	86	RSI	0.0004	
Bromomethane				3.0	3.0	RSI	0.0005	
Carbon disulfide				350	350	RSI	0.0004	
Carbon tetrachloride				2.9	2.9	RSL	0.0004	
Chlorobenzene				130	130	RSL	0.0005	
Chloroethane (ethyl chloride)				2,300	2,300	RSL	0.0005	
Chloroform				1.4	1.4	RSL	0.0007	
Chloromethane				46	46	RSL	0.0005	
cis-1,2-Dichloroethene				37	37	RSL	0.0004	
cis-1,3-Dichloropropene				8.2	8.2	RSL	0.0004	
Cyclohexane				2,700	2,700	RSL	0.0004	
Dibromochloromethane				39	39	RSL	0.0003	
Dichlorodifluoromethane				37	37	RSL	0.0005	
Ethylbenzene	3,180	0.27	181	25	0.27	DCRBCA	0.0004	
Isopropylbenzene (cumene)				990	990	RSL	0.0004	
m&p-Xylenes				240	240	RSL	0.0011	
Methyl Acetate				120,000	120,000	RSL	0.0025	
Methylcyclohexane				2,700	2,700	RSL	0.0004	
Methylene chloride				320	320	RSL	0.0036	
Methyl-t-butyl ether (MTBE)	8,490	1.6	1,000	210	1.6	DCRBCA	0.0004	
o-Xylene				280	280	RSL	0.0004	
Styrene (2023)				3,500	3,500	RSL	0.0004	
Tetrachloroethene (PCE)				39	39	RSL	0.0004	
Ioluene	64,600	691	449,000	4,700	691	DCRBCA	0.0005	
trans-1,2-Dichlenenenen				30	30	RSL	0.0005	
Tricklereethere (TCE)				8.2	8.2	RSL	0.0004	
Trichlorofluoromothana				1.9 T.9	3E 000 T'A	RSL		
Vinyl chloride				55,000 1 7	55,000 1 7	DCI	0.0005	
Xvlenes (Total)	23 000	 27	17 000	1.7	1.7 27		0.0005	
Organochlorine Pesticides	23,300	21	17,000	230	21	DENDLA	0.0004	
4 4-DDD				9.6	9.6	RSI	0.0012	
4 4-DDF				9.0	9.0 Q 2	RSI	0.0012	
4.4-DDT				8.5	8.5	RSI	0.0012	
Aldrin				0.18	0.18	RSL	0.0012	
Chlordane				7.7	7.7	RSL	0.052	

	DCRBCA [c]					Colortod		
	Construction Worker	Commerci	al Worker	USEPA			Analytical	
	Soil Upto Depth of	Sub-sur	face Soil	Industrial Soil Regional	ndustrial Soil Regional Screening Level [d]		Laboratory	
		540 54		Screening			Method	
	Wanor Emissions and	Indoor	Outdoor	Level [c]			Detection Limit	
	Particulates), and Dermal	Inhalation	Inhalation	Level [0]			[e]	
Constituent [a,b]	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source	(mg/kg)	
Organochlorine Pesticides								
Dieldrin				0.14	0.14	RSL	0.0015	
Endosulfan I				490	490	RSL	0.0016	
Endosulfan II				490	490	RSL	0.0016	
Endosulfan sulfate				490	490	RSL	0.002	
Endrin				25	25	RSL	0.002	
Endrin aldehyde				25	25	RSL	0.0019	
Endrin ketone				25	25	RSL	0.0023	
Heptachlor				0.63	0.63	RSL	0.0016	
Heptachlor epoxide				0.33	0.33	RSL	0.0017	
Methoxychlor				410	410	RSL	0.0023	
Toxaphene				2.1	2.1	RSL	0.044	
alpha-BHC				0.36	0.36	RSL	0.0019	
alpha-Chlordane				50	50	RSL	0.0015	
beta-BHC				1.3	1.3	RSL	0.0018	
delta-BHC				1.3	1.3	RSL	0.0018	
gamma-BHC (Lindane)				2.5	2.5	RSL	0.0017	
gamma-Chlordane				50	50	RSL	NA	

-- = Not available.

mg/kg = milligram per kilogram.

NA = Not available. There are no toxicity values available for these constituents and therefore an screening level could not be derived.

Notes:

[a] All constituents analyzed for at the Site are presented.

[b] The following surrogate compounds were selected for those constituents without toxicity information or screening levels:

The screening level for trivalent chromium was used for chromium results.

The screening level for Aroclor-1254 was used for Aroclor (Total) results because the only detected Aroclor was Aroclor-1254.

The screening level for p-cresol was used for 3&4-methylphenol results.

The screening level for 4-nitroaniline was used for 3-nitroaniline results.

The screening level for bis(2-Chloroethyl)ether was used for bis(2-Chloroisopropyl)ether results.

The screening level for 2,2',4,4'-tetrabromodiphenyl ether was used for 4-bromophenyl-phenylether and 4-chlorophenyl-phenylether results.

The screening level for acenaphthene was used for acenaphthylene results.

The screening level for diethylphthalate was used for dimethylphthalate results.

- The screening level for 1,4-dichlorobenzene was used for 1,3-dichlorobenzene results.
- The screening level for 1,3-dichloropropene was used for cis- and trans-1,3-dichloropropene results.
- The screening level for cyclohexane was used for methylcyclohexane results.
- The screening level for endosulfan sulfate was used for endosulfan I an II results.

The screening level for endrin was used for endrin aldehyde and endrin ketone results.

The screening level for technical hexachlorocyclohexane (BHC) was used for delta-BHC results.

[c] Screening levels are the District of Columbia Risk Based Corrective Action (DCRBCA; 2011) Sub-surface Soil Risk-Based Screening Levels for a Commercial Worker, Soil up to Depth of Construction for Construction Workers, and the United States Environmental Protection

Agency (USEPA) Industrial Soil Regional Screening Levels (RSL) (2023a). USEPA RSLs are based on a target cancer risk of 1×10⁻⁶

and a target non-cancer hazard of 0.1 (to account for additive effects).

- [d] The final selected screening level is the minimum value of the DCRBCA RBSLs and the USEPA Industrial Soil RSL.
- [e] The analytical method detection limits are presented.
- [f] Background threshold value for arsenic in Soil Type 4, Urban Land (Table 6.21, Tetra Tech 2022).
- [g] According to the USEPA RSL Users Guide (2023b), the total petroleum hydrocarbon (TPH) carbon ranges used in the RSLs are not intended to screen against TPH diesel, gasoline, oil or residual range organics analysis, as the carbon ranges do not match those presented in the USEPA Provisional Peer Reviewed Toxicity Values.

References:

District of Columbia Risk-Based Corrective Action Technical Guidance (Risk-Based Decision Making). 2011. District Department of the Environment Toxic Substances Division Underground Storage Tanks Branch. Updated June.

Tetra Tech. 2022. Inorganic Chemical Concentrations in Soils of the District of Columbia – Report 1 for Five Soil Types. Prepared for the Department of Energy and Environment. November 4.

USEPA. 2023a. Regional Screening Levels (RSLs) - Generic Tables. May. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. USEPA. 2023b. Regional Screening Levels (RSLs) - User's Guide. May. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide.

Summary of Protection of Groundwater Soil Screening Levels and Detection Limits Washington Metropolitan Area Transit Authority Northern Bus Garage 4615 14th Street NW, Washington, D.C. 20011

	USEPA Soil Screening Level (SSL) based on THQ=0.1 [c]	USEPA Soil Screening Level (SSL) based on THQ=1 [c]	Selected Analytical Laboratory Method Detection Limit [d]
Constituent [a,b]	(mg/kg)	(mg/kg)	(mg/kg)
Priority Pollutant Metals			
Mercury	1.4	14	0.075
Chromium	180,000	180,000	0.38
Chromium VI	0.00067	0.00067	0.38
Copper	46	46	0.475
Lead	14	14	0.115
Nickel	2.6	26	0.38
Zinc	37	370	1.85
Antimony	0.27	0.27	0.415
Arsenic	0.29	0.29	0.125
Beryllium	3.2	3.2	0.28
Cadmium	0.38	0.38	0.095
Selenium	0.26	0.26	0.135
Silver	0.080	0.80	0.085
Thallium	0.14	0.14	0.15
Polychlorinated biphenyls			
Aroclor (Total)	0.0020	0.0020	NA
Aroclor-1016	0.013	0.021	0.031
Aroclor-1221	0.000080	0.000080	0.031
Aroclor-1232	0.000080	0.000080	0.031
Aroclor-1242	0.0012	0.0012	0.031
Aroclor-1248	0.0012	0.0012	0.031
Aroclor-1254	0.0020	0.0020	0.031
Aroclor-1260	0.0055	0.0055	0.031
Aroclor-1262			NA
Aroclor-1268			NA
Semi-Volatile Organic Compounds			
1,1'-Biphenyl	0.00087	0.0087	NA
1,2,4,5-Tetrachlorobenzene	0.000079	0.00079	NA
2,3,4,6-Tetrachlorophenol	0.018	0.18	NA
2,4,5-Trichlorophenol	0.40	4.000	0.004
2,4,6-Trichlorophenol	0.0012	0.0040	0.0263
2,4-Dichlorophenol	0.0023	0.023	0.0263
2,4-Dimethylphenol	0.042	0.42	0.0317
2,4-Dinitrophenol	0.0044	0.044	0.0757
2,4-Dinitrotoluene	0.00032	0.00032	0.0233
2,6-Dinitrotoluene	0.000067	0.000067	0.0193
2-Chloronaphthalene	0.39	3.9	0.023
2-Chlorophenol	0.0089	0.089	0.0167

Summary of Protection of Groundwater Soil Screening Levels and Detection Limits 4615 14th Street NW, Washington, D.C. 20011

	USEPA Soil Screening Level (SSL) based on THQ=0.1 [c]	USEPA Soil Screening Level (SSL) based on THQ=1 [c]	Selected Analytical Laboratory Method Detection Limit [d]
Constituent [a,b]	(mg/kg)	(mg/kg)	(mg/kg)
Semi-Volatile Organic Compounds			
2-Methylnaphthalene	0.019	0.19	0.008
2-Methylphenol	0.075	0.75	0.0183
2-Nitroaniline	0.0080	0.08	0.019
2-Nitrophenol			0.0267
3&4-Methylphenol	0.030	0.30	0.0243
3,3'-Dichlorobenzidine	0.00082	0.00082	0.0183
3-Nitroaniline	0.0016	0.0016	0.0233
4,6-Dinitro-2-methylphenol (4,6 dinitro-o-cresol)	0.00026	0.0026	0.0397
4-Bromophenyl-phenylether	0.0053	0.053	0.0173
4-Chloro-3-methylphenol (p-chloro-m-cresol)	0.17	1.7	0.029
4-Chloroaniline (P-chloroaniline)	0.00016	0.00016	0.0257
4-Chlorophenyl-phenylether	0.0053	0.053	0.0187
4-Nitroaniline	0.0016	0.0016	0.0333
4-Nitrophenol			0.0513
Acenaphthene	0.55	5.5	0.006
Acenaphthylene	0.55	5.5	0.0057
Acetophenone	0.058	0.58	0.0213
Anthracene	5.8	58	0.0043
Atrazine	0.0019	0.0019	0.0167
Benzaldehyde	0.0041	0.0041	NA
Benzo[a]anthracene	0.011	0.011	0.0333
Benzo[a]pyrene	0.24	0.24	0.0047
Benzo[b]fluoranthene	0.30	0.30	0.0043
Benzo[g,h,i]perylene	1.3	13	0.006
Benzo[k]fluoranthene	2.9	2.9	0.0073
Biphenyl (Diphenyl)	0.00087	0.0087	0.0177
bis(2-Chloroethoxy)methane	0.0013	0.013	0.0217
bis(2-Chloroethyl)ether	0.000036	0.000036	0.0043
bis(2-Chloroisopropyl)ether	0.0000036	0.000036	0.005
bis(2-Ethylhexyl)phthalate	1.4	1.4	0.023
Butylbenzylphthalate	0.24	0.24	NA
Caprolactam	0.25	2.5	0.012
Carbazole			0.026
Chrysene	9.0	9.0	0.004
Dibenzo[a,h]anthracene	0.096	0.096	0.0057
Dibenzofuran	0.015	0.15	0.0193

Summary of Protection of Groundwater Soil Screening Levels and Detection Limits 4615 14th Street NW, Washington, D.C. 20011

	USEPA Soil Screening Level (SSL) based on THQ=0.1 [c]	USEPA Soil Screening Level (SSL) based on THQ=1 [c]	Selected Analytical Laboratory Method Detection Limit [d]
Constituent [a,b]	(mg/kg)	(mg/kg)	(mg/kg)
Semi-Volatile Organic Compounds			
Diethylphthalate	0.61	6.1	0.02
Dimethylphthalate	0.61	6.1	0.0193
Di-n-butylphthalate (Dibutyl Phthalate)	0.23	2.3	0.0173
Di-n-octylphthalate (Di-n-octyl phthalate)	5.7	57	0.012
Fluoranthene	8.9	89	0.0037
Fluorene	0.54	5.4	0.0057
Hexachlorobenzene	0.013	0.013	0.0063
Hexachlorobutadiene	0.00027	0.00027	0.019
Hexachlorocyclopentadiene	0.16	0.16	0.03
Hexachloroethane	0.00020	0.00020	0.0213
Indeno[1,2,3-cd]pyrene	0.98	0.98	0.0077
Isophorone	0.026	0.026	0.022
Naphthalene	0.00038	0.00038	0.0006
Nitrobenzene	0.000092	0.000092	0.025
N-Nitroso-di-n-propylamine	0.000081	0.0000081	0.003
N-Nitrosodiphenylamine	0.067	0.067	0.01
Pentachlorophenol	0.0014	0.0014	0.0403
Phenanthrene	1.3	13	0.005
Phenol	0.33	3.3	0.024
Pyrene	1.3	13	0.0043
Total Petroleum Hydrocarbons			
Gasoline Range Organics	[e]	[e]	0.05
Diesel Range Organics	[e]	[e]	3.2
Total Petroleum Hydrocarbons	[e]	[e]	NA
Volatile Organic Compounds			
1,1,1-Trichloroethane	0.07	0.070	0.0004
1,1,2,2-Tetrachloroethane	0.000030	0.000030	0.0006
1,1,2-Trichloro-1,2,2-trifluoroethane	2.6	26	NA
1,1,2-Trichloroethane	0.0016	0.0016	0.0003
1,1-Dichloroethane	0.00078	0.00078	0.0004
1,1-Dichloroethene	0.0025	0.0025	0.0004
1,2,3-Trichlorobenzene	0.0021	0.021	0.0005
1,2,4-Trichlorobenzene	0.20	0.20	0.0005
1,2-Dibromo-3-chloropropane	0.000086	0.000086	0.0009
1,2-Dibromoethane	0.000014	0.000014	0.0005
1,2-Dichlorobenzene	0.58	0.58	0.0004

Summary of Protection of Groundwater Soil Screening Levels and Detection Limits 4615 14th Street NW, Washington, D.C. 20011

	USEPA Soil Screening Level (SSL) based on THQ=0.1 [c]	USEPA Soil Screening Level (SSL) based on THQ=1 [c]	Selected Analytical Laboratory Method Detection Limit [d]
Constituent [a,b]	(mg/kg)	(mg/kg)	(mg/kg)
Volatile Organic Compounds			
1,2-Dichloroethane	0.0014	0.0014	0.0004
1,2-Dichloropropane	0.0017	0.0017	0.0005
1,3-Dichlorobenzene	0.072	0.072	0.0005
1,4-Dichlorobenzene	0.072	0.072	0.0009
1,4-Dioxane	0.000094	0.000094	NA
2-Butanone (methyl ethyl ketone)	0.12	1.2	0.0023
2-Hexanone	0.00088	0.0088	0.0007
4-Methyl-2-pentanone (Methyl isobutyl ketone)	0.14	1.4	0.0006
Acetone	0.37	3.7	0.011
Benzene	0.0026	0.0026	0.0004
Bromochloromethane	0.0021	0.021	0.0005
Bromodichloromethane	0.022	0.022	0.0004
Bromoform	0.021	0.021	0.0005
Bromomethane	0.00019	0.0019	0.001
Carbon disulfide	0.024	0.24	0.0004
Carbon tetrachloride	0.0019	0.0019	0.0004
Chlorobenzene	0.068	0.068	0.0005
Chloroethane (ethyl chloride)	0.24	2.4	0.0005
Chloroform	0.022	0.022	0.0007
Chloromethane	0.0049	0.049	0.0005
cis-1,2-Dichloroethene	0.021	0.021	0.0004
cis-1,3-Dichloropropene	0.00017	0.00017	0.0004
Cyclohexane	1.3	13	0.0004
Dibromochloromethane	0.021	0.021	0.0003
Dichlorodifluoromethane	0.030	0.30	0.0005
Ethylbenzene	0.78	0.78	0.0004
Isopropylbenzene (cumene)	0.074	0.74	0.0004
m&p-Xylenes	0.019	0.19	0.0011
Methyl Acetate	0.41	4.1	0.0025
Methylcyclohexane	1.3	13	0.0004
Methylene chloride	0.0013	0.0013	0.0036
Methyl-t-butyl ether (MTBE)	0.0032	0.0032	0.0004
o-Xylene	0.019	0.19	0.0004
Styrene	0.11	0.11	0.0004
Tetrachloroethene (PCE)	0.0023	0.0023	0.0004
Toluene	0.69	0.69	0.0005
trans-1,2-Dichloroethene	0.031	0.031	0.0005

Summary of Protection of Groundwater Soil Screening Levels and Detection Limits 4615 14th Street NW, Washington, D.C. 20011

	USEPA Soil Screening Level (SSL) based on THQ=0.1 [c]	USEPA Soil Screening Level (SSL) based on THQ=1 [c]	Selected Analytical Laboratory Method Detection Limit [d]
Constituent [a,b]	(mg/kg)	(mg/kg)	(mg/kg)
Volatile Organic Compounds			
trans-1,3-Dichloropropene	0.00017	0.00017	0.0004
Trichloroethene (TCE)	0.0018	0.0018	0.0005
Trichlorofluoromethane	0.33	3.3	0.0005
Vinyl chloride	0.00069	0.00069	0.0003
Xylenes (Total)	9.9	9.9	0.0004
Organochlorine Pesticides			
4,4-DDD	0.0075	0.0075	0.0012
4,4-DDE	0.011	0.011	0.0012
4,4-DDT	0.077	0.077	0.0012
Aldrin	0.00015	0.00015	0.0012
Chlordane	0.27	0.27	0.052
Dieldrin	0.000071	0.000071	0.0015
Endosulfan I	0.21	2.1	0.0016
Endosulfan II	0.21	2.1	0.0016
Endosulfan sulfate	0.21	2.1	0.002
Endrin	0.081	0.081	0.002
Endrin aldehyde	0.081	0.081	0.0019
Endrin ketone	0.081	0.081	0.0023
Heptachlor	0.033	0.033	0.0016
Heptachlor epoxide	0.0041	0.0041	0.0017
Methoxychlor	2.2	2.2	0.0023
Toxaphene	0.46	0.46	0.044
alpha-BHC	0.000042	0.000042	0.0019
alpha-Chlordane	0.049	0.49	0.0015
beta-BHC	0.00015	0.00015	0.0018
delta-BHC	0.00015	0.00015	0.0018
gamma-BHC (Lindane)	0.0012	0.0012	0.0017
gamma-Chlordane	0.14	1.40	NA

Notes on last page.

Summary of Protection of Groundwater Soil Screening Levels and Detection Limits 4615 14th Street NW, Washington, D.C. 20011

	USEPA Soil Screening Level (SSL) based on THQ=0.1 [c]	USEPA Soil Screening Level (SSL) based on THQ=1 [c]	Selected Analytical Laboratory Method Detection Limit [d]
Constituent [a,b]	(mg/kg)	(mg/kg)	(mg/kg)

-- = Not available.

mg/kg = milligram per kilogram.

NA = Not available.

Notes:

[a] All constituents analyzed for at the Site are presented.

- [b] The following surrogate compounds were selected for those constituents without toxicity information or screening levels: The screening level for total chromium was used for chromium results.
 - The screening level for Aroclor-1254 was used for Aroclor (Total) results because only Aroclor-1254 was detected.

The screening level for p-cresol was used for 3&4-methylphenol results.

The screening level for 4-nitroaniline was used for 3-nitroaniline results.

The screening level for bis(2-Chloroethyl)ether was used for bis(2-Chloroisopropyl)ether results.

The screening level for 2,2',4,4'-tetrabromodiphenyl ether was used for 4-bromophenyl-phenylether and 4-chlorophenylphenylether results.

The screening level for acenaphthene was used for acenaphthylene results.

The screening level for diethylphthalate was used for dimethylphthalate results.

The screening level for 1,4-dichlorobenzene was used for 1,3-dichlorobenzene results.

The screening level for 1,3-dichloropropene was used for cis- and trans-1,3-dichloropropene results.

The screening level for cyclohexane was used for methylcyclohexane results.

The screening level for endosulfan sulfate was used for endosulfan I an II results.

The screening level for endrin was used for endrin aldehyde and endrin ketone results.

The screening level for technical hexachlorocyclohexane (BHC) was used for delta-BHC results.

[c] Screening levels for the protection of groundwater (SSLs) were based on the maximum contaminant level (MCLs), where available, or otherwise risk-based. Values are based on a dilution attenuation factor of 1. Both a target hazard quotient of 0.1 and 1.0 are presented.

[d] The analytical method detection limits are presented.

[e] According to the USEPA RSL Users Guide (2023b), the total petroleum hydrocarbon (TPH) carbon ranges used in the RSLs are not intended to screen against TPH diesel, gasoline, oil or residual range organics analysis, as the carbon ranges do not match those presented in the USEPA Provisional Peer Reviewed Toxicity Values.

References:

District of Columbia Risk-Based Corrective Action Technical Guidance (Risk-Based Decision Making). 2011. District Department of the Environment Toxic Substances Division Underground Storage Tanks Branch. Updated June.

USEPA. 2023a. Regional Screening Levels (RSLs) - Generic Tables. May. Available at: https://www.epa.gov/risk/regional-screeninglevels-rsls-generic-tables.

USEPA. 2023b. Regional Screening Levels (RSLs) - User's Guide. May. Available at: https://www.epa.gov/risk/regional-screeninglevels-rsls-users-guide.

District of Columbia Water and Sewer Authority Temporary Discharge Authorization Permit

TEMPORARY DISCHARGE AUTHORIZATION PERMIT

TDA Number	0323-1534	Issue Date	3/13/23	Effective Date	3/13/23	Expiration Date	3/12/25

Issued to:			
Business Name	Clark Construction Group, LLC		
Mailing Address	7900 Westpark Drive McLean, VA 22102		
Contact Name	Matt Ellis	Title	Senior Superintendent
Telephone No.	202-345-2886	Email	matt.ellis@clarkfoundationllc.com
Project/Discharge Location/Description	Dewatering of groundwater and stormwater runoff during the demolition of a majority of the existing 270,000 square foot multi-story WMATA bus garage building at 4615 14 th Street, NW, in Washington, DC, to redevelop the site for mixed use (new bus garage and retail space). A portion of the original 1906 trolley barn, along the west side of the building, will be preserved. The collected runoff and groundwater from the deep dewatering wells and sumps will be pumped into a treatment system consisting of two 18,000-gallon weir tanks in parallel and four 2,000-pound steel vessels filled with activated liquid phase carbon. Discharge from the treatment system will flow into catch basin C-632-759 which discharges via 12" lines to a 114" combined sewer line running along Arkansas Ave NW, per the attached map. Maximum discharge will be 360,000 gallons per day at a rate of 200 gallons per minute.		
Owner Name, Contact and Phone No. (if different from above)	Washington Metropolitan Transit Authority (Diana Levy – 202-962-2199	WMATA)	

Re	Required Contacts Prior to Discharging (this permit is not valid until all required contacts have been made)			
1)	If groundwater is encountered, the permittee must contact DC Water Meter Services, LaTonya McMillan at 202- 612-3500, to obtain a DC Water flow meter or install their own meter (in accordance with site-specific conditions on page 2) if a DC Water meter is not available when groundwater is encountered. Sewered groundwater shall be billed at \$3.42/CCF or in accordance with 21 DCMR 4101,2(a).	Yes ₪	NA 🗆	
2)	The permittee must contact Nichol Sowell, DC Water Pumping and Sewer Operations (DPSO), at <u>Nichol.bellsowell@dcwater.com</u> and Clement Oguns at <u>clement.oguns@dcwater.com</u> (DPSO), to notify them of the intent to discharge to the sewer system and location of the discharge. The permittee must coordinate opening of any manholes with DPSO. Only DC Water staff and authorized persons may open manholes.	Yes 🗆	NA 🗹	
3)	The permittee must contact DC Water Permit Operations at 202-646-8600, to submit plans and fees to obtain approval to install a temporary hard connection to the sanitary sewer below ground.	Yes 🗆	NA ⊠	
4)	The permittee must contact the DDOT public space permit section at 202-535-2699 or 202-535-2982 to obtain a permit to access any manhole located in public space (even if it is within the fenced site boundary).	Yes 🗆	NA ⊠	

Gei	General Conditions		
1)	This permit is valid for discharge to the sewer system only at the location(s) specified above.		
2)	The permit shall be posted at the job site.		
3)	All discharges shall comply with D.C. Law 6-95, "Wastewater System Regulation Amendment Act of 1985 (the Act) as amended" and the regulations implementing the Act as contained in Title 21 DCMR Chapter 15.		
4)	All spills and emergencies or conditions that may result in surpassing the discharge standards or adversely affecting the wastewater system shall be promptly conveyed to the Pretreatment Program Manager by email to pretreatment@dcwater.com and by phone during normal working hours by calling (202) 787-4177, and at all other times by calling (202) 612-3400 (DC Water 24-hour Call Center).		
5)	A TDA Permit may be valid for up to two (2) years from the effective date of the permit unless otherwise specified. If the initial permit term is less than two years, a request for an extension may be submitted 14 days in advance of the expiration date to extend the permit. If the discharge will continue beyond two years, a new permit application must be submitted.		
6)	The party/parties signing the TDA Permit Application or letter of request to discharge, and the owner of the property are responsible for compliance with the Act and implementing regulations. Any contractual agreements between the parties involved in requesting a TDA Permit are irrelevant to DC Water.		

TEMPORARY DISCHARGE AUTHORIZATION PERMIT

General Conditions (continued)

7) If required, flow meters shall be obtained from DC Water (as available) and returned in like condition. Non-functional flow meters shall be returned for repair within 7 days of becoming aware of the problem. All flow meters must be returned at the end of the discharge permit use. Damaged meters that are returned shall be subject to a charge to be determined by DC Water and applied to the final bill. Meters that are not returned shall be subject to a charge to be determined by DC Water and applied with DC Metropolitan Police as stolen property. Contact Meter Services Division immediately to report any lost, stolen, or damaged property.

Miscellaneous Conditions

- This TDA permit shall be revoked immediately if the discharge causes an explosive vapor buildup inside the sewers or threatens the structural integrity of the sewer system, including blockage or causes the District to exercise its emergency authority under DC Official Code 8-105.12 (emergency suspension of service).
- 2) The permittee is responsible for notifying DC Water in writing or by email within 15 days following the termination of the temporary discharge and shall submit a photo documenting the condition of the discharge location (catch basin/manhole interior) prior to dewatering and upon completion of the temporary discharge.
- All correspondence shall include the TDA permit number and be emailed to <u>pretreatment@dcwater.com</u> or mailed to: Elaine Wilson, Pretreatment Program Manager DC Water and Sewer Authority Wastewater Treatment 5000 Overlook Ave., SW, Washington, DC 20032

Site-specific Conditions (supersede any general and miscellaneous conditions specified above)

FLOW METER REQUIREMENTS

If a DC Water flow meter is installed, a photo of the meter reading (date-stamped or date certified) shall be submitted monthly to <u>meterservices@dcwater.com</u> and included with the Periodic Compliance Report (PCR) to pretreatment@dcwater.com.

If a DC Water flow meter is required above and not available on the date of permit issuance or date groundwater is encountered, the permittee shall install their own flow meter on the groundwater discharge within sixty (60) days of permit issuance or date groundwater was encountered. The flow meter shall be installed on the discharge line after the final treatment. A photo of the meter reading (date-stamped or date certified) shall be submitted upon installation and monthly with the Periodic Compliance Report (PCR) to pretreatment@dcwater.com. The permittee shall set up a billing account with DC Water for quarterly billing of groundwater (or other frequency specified by DC Water).

If the flow meter does not appear to be registering accurate flow, detach the meter and run clean water through the meter to dislodge any particles that may be clogging the meter. Report all issues with flow meter readings to pretreatment@dcwater.com within 24-h and include in the PCR.

SAMPLING & REPORTING

Grab samples of the discharge from the sediment tank shall be collected monthly and analyzed for TPH Oil and Grease (EPA 1664 HEM-SGT), VOCs (EPA 624.1), PCBs (608.3), total lead, total suspended solids (TSS), and pH. Results shall be submitted to DC Water by the 30th of the following month. The report shall include the PCR Form that is signed and certified by a signing official or an alternate individual that is given signing authority in writing by the signing official per 21 DCMR §§ 1508.10-1508.11 and shall include the laboratory report, chain of custody, average daily flow for the reporting period, and meter photo documentation. All sample results from the discharge location must be reported to DC Water.

If there is no discharge of groundwater during the month, send an email to pretreatment@dcwater.com stating there was no flow during that period.

MAINTENANCE OF DISCHARGE

The weir tanks and filter bags must be inspected daily and maintained regularly to prevent the discharge of settled solids to the sewer system. If TSS is >300 mg/L or excessive solids observed, corrective action must be taken immediately to prevent the discharge of excess solids to the sewer system.

The pH shall be maintained between 5.0 and 10.0 during normal discharge activities. An upper pH limit of 11.0 is authorized during concrete work and grouting activities. No concrete or grouting solids or slurry shall be discharged to the sewer.

SPILLS, OVERFLOW & VIOLATIONS

Any spills, sewer overflows, clogs, treatment upsets, violations (e.g., benzene >14 ug/L, TSS >300 mg/L, TPH oil and grease >100 mg/L, or pH <5 or >11), or operational problems that might affect the characteristics of the discharge from the on-site treatment system shall be reported to the Pretreatment Program Manager at 202-787-4177 and <u>pretreatment@dcwater.com</u> within 24-h of becoming aware of the problem.

If actual discharges to DC Water sewers are more than 20% greater than the projected flows listed on this permit, a new permit application/flow information must be submitted and a revised permit issued.

TEMPORARY DISCHARGE AUTHORIZATION PERMIT

Site-specific Conditions (supersede any general and miscellaneous conditions specified above)

PUBLIC SAFETY

If the discharge hose is in public space, public safety precautions must be taken, which may include, but not be limited to safety cones, signage, fencing, installation of a ramp over the discharge hose, etc. Avoid spillage from hose joints. Protect the manhole and opening, if authorized to access a manhole. Secure hoses and other materials and equipment to prevent tripping hazards.

No open flow discharge to the curb is allowed. All discharges must be directed to the approved discharge location through an enclosed conduit (e.g., hose or pipe).

MATERIALS MANAGEMENT

All new and used hazardous or toxic chemicals, fuel, oil, and corrosives (pH<5 or >12) shall be stored under covered or in enclosed secondary containment units.

The temporary discharge indicated on this form is authorized under the above cond	ditions.
AMain 2	March 13, 2023
Marc Furney, DC Water Authorized Signature	Date

TDA 0323-1534 Discharge Location Map

WMATA – Northern Bus Division Replacement Basis of Design Report, Vapor Management System

PAGE INTENTIONALLY LEFT BLANK

TO BE REPLACED WITH UPDATED ATTACHMENTS REFLECTING 30-MIL VAPOR BARRIER

RFP FQ19144N Basis of Design (BOD) Report Vapor Management System December 21, 2023

TABLE OF CONTENTS

TABLE OF CONTENTS	2
TABLE OF FIGURES	2
INTRODUCTION – VAPOR MANAGEMENT SYSTEM	3
SECTION 1 – SUB-SLAB VAPOR MANAGEMENT SYSTEM	3
SECTION 2 – FUTURE VAPOR MANAGEMENT SYSTEM (PROOF OF CONCEPT)	4
APPENDICES	7

TABLE OF FIGURES

Figure 1: Boiler Room 2224	.5
Figure 2: Penthouse Room 3003	.5

APPENDICES

- A: TerraVent[™] Technical Data Sheet
- B: AIR 1000 Carbon Vessel Cut Sheet
- C: Vapor Barrier Cut Sheet

INTRODUCTION – VAPOR MANAGEMENT SYSTEM

A vapor management system has been considered within the building footprint due to the identified onsite impacts from petroleum and chlorinated solvents identified in soil samples collected from the property. The following sections will detail the vapor management plan and will be broken into two sections, the sub-slab elements and vapor sampling to be installed during construction and the remaining elements as a proof of concept for space planning purposes for a future installation, if required.

SECTION 1 – SUB-SLAB VAPOR MANAGEMENT SYSTEM

The sub-slab vapor management system will consist of a vapor barrier, vapor collection system (sub-slab), and sub-slab soil vapor sampling. The previously designed building ventilation system is a separate system from the vapor management system. The design of the previously designed building ventilation system will remain the same and maintain the designed high air exchange rate of a minimum of four (4) air changes per hour.

The vapor management system is part of the Soil Remediation and Vapor Management Plan provided to WMATA and DOEE dated August 12, 2022.

Vapor Barrier

The vapor barrier is a petroleum and solvent resistant 30-mil (one thousandth of an inch) thick vapor barrier to be placed just below the concrete slab on the Bus Storage Level. Absolute Barrier (Y30BAC) or an equivalent vapor barrier will be used. Technical information for the Absolute Barrier product is included in Appendix C.

Collection System

The collection system will be installed as a hybrid PVC and low-profile flexible sub-slab vapor collection system. The basis of design for the flexible sub-slab vapor collection system is TerraVent[™] and the Technical Data Sheet can be found in Appendix A. A series of 6-inch PVC pipes will connect to the TerraVent[™] lines and form a collection system that will then be connected to 6-inch diameter PVC vertical vent pipes. At these locations, vapor sampling will occur as described below. The 6-inch diameter vent pipes will be capped two feet above the concrete slab. Section 2 below of the continuation of the vapor management system and will further explain the proposed pathway, treatment process and operations.

Sub-Slab Soil Vapor Sampling

To allow for the collection of sub-slab vapor samples and to monitor the effectiveness of the vapor management system, a 1/4-inch sample port ball valve will be installed at each capped vent pipe to allow for the collection of soil vapor samples in each area of the vapor collection system.

Operations

Quarterly sampling of ambient air, indoor air and sub-slab monitoring points is recommended until sufficient data is collected to support reducing to semi-annual or annual sampling.

SECTION 2 – FUTURE VAPOR MANAGEMENT SYSTEM (PROOF OF CONCEPT)

The sub-slab vapor management system will consist of a vapor barrier, vapor collection system (sub-slab), and sub-slab soil vapor sampling detailed in Section 1 and will also include the extension of the vapor collection system above grade, fans, and pre-treatment via carbon vessels prior to discharging the vapors to the atmosphere. For proof-of-concept purposes, space has been allocated for the vapor collection system, including the carbon vessels and exhaust fans, including electrical capacity for powering the exhaust fans.

Collection System

The 6-inch diameter PVC vertical vent pipes will be extended and will manifold into two separate lines, each of which will tie into a set of two vapor phase carbon vessels described below. The vapors will be pulled through the PVC pipes by an exhaust fan installed adjacent to the carbon vessels.

Vapor Phase Carbon Vessels

All air exhaust from the building will be treated prior to leaving the building. The captured sub-slab vapor will be pre-treated with two sets of two vapor phase carbon vessels installed in series. The two sets of carbon vessels will be stored in two locations in the building. The first location is within the Boiler Room (2224) (see **Figure 1**) on the Bus Maintenance Level and the second location is in the Penthouse (3003) (see **Figure 2**) on the Car Parking Level. The basis of design for each carbon vessel is the Air 1000 and the data sheet can be found in Appendix B.

Figure 2: Penthouse Room 3003

Operations

The vapor management system will operate on a continuous basis to recover the vapors from below the building and pull them through the vapor phase carbon vessels using one 300 CFM exhaust fans at each location. The basis of design for the exhaust fans is the FPB-100H. The fans will be placed on the effluent side of the two carbon vessel sets to pull the vapors recovered in the sub-slab vapor recovery system through the carbon vessels for pre-treatment prior to discharging outside of the building. The carbon vessels will be installed with sample ports on the influent end, in between the two vessels, and effluent end of the vessels to allow for regular vapor sample collection to evaluate when and how frequently the carbon will need to be changed out. The vapor samples should be collected monthly for the first year until a trend of break-through time can be determined for carbon change-out. Once the carbon change-out frequency has been determined, the sampling frequency can be reduced.

APPENDICES

APPENDIX A

TerraVent™ Technical Data Sheet

TerraVent[™] Technical Data Sheet

TerraVent is a low-profile, trenchless, flexible, sub-slab vapor collection system used in lieu of perforated piping. It consists of a heavy duty 3-dimensional, high flow, polypropylene dimpled core. The core is then wrapped and bonded with a non-woven geotextile to prevent soil, sand or gravel pass into the dimple core. TerraVent core is made from 100% Post-Industrial/Pre-Consumer polypropylene regrind material.

TerraVent Core Properties Properties Test Method TerraVent Compressive Strength ASTM D-1621 9,500 psf. Thickness 1 inch Flow Rate (Hydraulic gradient = 0.1) ASTM D-4716 30 gpm/ft width

TerraVent Fabric Properties

Properties	Test Method	TerraVent
Grab Tensile Strength	ASTM D-4632	100 lbs.
CBR Puncture	ASTM D-6241	250 lbs.
Flow	ASTM D-4491	140 gpm/ft ²
AOS	ASTM D-4751	70 U.S Sieve
Permittivity	ASTM D-4491	2.0 sec-1
U.V Resistance	ASTM D-4355	70% @ 500 hrs.

Packaging

Properties	Value
Dimension:	12" x 165'
Weight	68 lbs.

Corporate Headquarters 1011 Calle Sombra, San Clemente Ca 92673 USA Tel: +1.949.366.8000

APPENDIX B

Air 1000 Carbon Vessel Cut Sheet

AIR 1000

TYPICAL FLOWS	300-900 scfm
MAXIMUM SUGGESTED FLOW	1250 scfm
MAXIMUM OPERATING PRESSURE	1 psig
MAXIMUM TEMPERATURE	140°F

Diameter: 48" Overall Height: 60"

STANDARD FEATURES

- Adsorber with 1,000 lbs. virgin or reactivated carbon
- Heavy-duty ¼" steel vessel with interior corrosion resistant high-solids epoxy lining
- Over 1,800 in² of surface area for superior air distribution and the lowest pressure drops
- ✤ 4" inlet and outlet connections
- Advanced internal distribution and collection systems designed to optimize carbon usage rates, minimizing operating expenses

OPTIONAL FEATURES

- 6" inlet and outlet connections
- Condensate drain line
- Hard pipe manifold systems
- Flexible hose assemblies

APPENDIX C

Vapor Barrier Cut Sheet and Installation Guide

ABSOLUTE BARRIER® Y30BAC

HIGH PERFORMANCE LLDPE/EVOH GEOMEMBRANE GAS BARRIER

PRODUCT DESCRIPTION

Absolute Barrier® Y30BAC is a seven-layer co-extruded geomembrane consisting of very flexible, linear-low-density polyethylene (LLDPE) with an inner core of chemically resistant EVOH barrier resin, designed specifically as a barrier against radon, methane and VOCs. High strength LLDPE provides exceptional tear and impact resistance. A robust stabilization package that exceeds the industry standard; provides longterm protection from thermal oxidation and ultraviolet degradation in exposed applications.

PRODUCT USE

Absolute Barrier® Y-Series is designed to stop gas vapor migration on Brownfield sites, in residential and commercial buildings, as well as geomembrane containment and covering systems. When installed under concrete slabs as a gas barrier, a passive system is recommended to include a ventilated system with sump(s) that could be converted to an active control system with properly designed ventilation fans. Y30BAC is over 800 times less permeable to methane gas than LLDPE vapor barriers in a comparable thickness.

Absolute Barrier® performs extremely well preventing the degradation of EPS geofoam by protecting it from harsh VOCs including direct gasoline or diesel fuel contact.

Absolute Barrier[®] Y30BAC is a highly effective, temporary and long-term, landfill caps with VOC diffusion coefficients ranging from 40 to 240 times less than standard 80 mil HDPE geomembranes. Contaminants found in leachate and gas in municipal and hazardous waste landfills can migrate through standard HDPE; contributing to both atmospheric and groundwater contaminations. Absolute Barrier® Y-Series is an effective barrier to a wide range of VOCs including benzene, toluene, trichloroethylene, perchloroethylene, and many others.

SIZE & PACKAGING

Absolute Barrier® Y30BAC is available in 16' c-fold or in fabricated panels up to 50,000 sq. ft. All fabricated panels are accordion folded and tightly rolled onto a heavy-duty core for ease of handling and time saving installation.

EPS Geofoam Protection

Viaflex

PRODUCT	P	ART	#
ABSOLUTE BARRIER®		Y30BA	C

APPLICATIONS

EPS Geofoam Protection	Underslab Methane Barrier
Landfill Cap	Underslab Vapor Barrier
Temporary Landfill Gas Cover	Remediation Cover / Liner
Floating Gas Cover	Leachate Collection Ponds
Underslab VOC Barrier	Odor Control Barrier
Underslab Radon Barrier	Secondary Containment

BSOLUTE BARRIER® Y30BAC

HIGH PERFORMANCE LLDPE/EVOH GEOMEMBRANE GAS BARRIER

		ABSOLUTE BARRIER® Y30BAC			
		IMPE	RIAL	MET	RIC
PROPERTIES	TEST METHOD	MINIMUM	TYPICAL	MINIMUM	TYPICAL
Appearance		Bla	ck	Bla	ack
Thickness	ASTM D5199	30 Mils Average	30 Mils Nominal	0.76 mm Average	0.76 mm Nominal
Weight		150 lb	s/msf	732	g/m²
Tensile Strength at Break	ASTM D6693	85 lbs/in	100 lbs/in	149 N/cm	175 N/cm
Tensile Elongation at Break	ASTM D6693	500 %	600 %	500 %	600 %
Tear Strength	ASTM D1004	18 lbs	22 lbs	80 N	98 N
Puncture Resistance	ASTM D4833	60 lbs	75 lbs	267 N	334 N
Oxidation Induction Time (OIT) or High Pressure OIT (HPOIT)	ASTM D3895 ASTM D5885	100 min 400 min	250 min -	100 min 400 min	250 min -
CARBON BLACK CONTENT ⁷	ASTM D4218	2.0 %	2.3 %	2.0 %	2.3 %
Carbon Black Dispersion	ASTM D5596		P	ass	
Benzene Permeance	See Note 6		2.13 x 10 ⁻¹⁰ m ² /sec	or 1.93 x 10 ⁻¹³ m/s	
Toluene Permeance	See Note 6		2.95 x 10 ⁻¹⁰ m ² /sec	or 7.77 x 10 ⁻¹⁴ m/s	
Ethylbenzene Permeance	See Note 6		2.31 x 10 ⁻¹⁰ m ² /sec	or 1.78 x 10 ⁻¹⁴ m/s	
M & P-Xylenes Permeance	See Note 6		2.19 x 10 ⁻¹⁰ m ² /sec	or 2.03 x 10 ⁻¹⁴ m/s	
O-Xylene Permeance	See Note 6		2.07 x 10 ⁻¹⁰ m ² /sec	or 1.83 x 10 ⁻¹⁴ m/s	
Methane Permeance	ASTM D1434		< 4.93	E ⁻¹³ m/s	
Hydrogen Sulfide	See Note 9		1.45E	⁻⁰⁹ m/s	
Trichloroethylene (tce)	See Note 6		1.44 x 10 ⁻¹⁰ m ² /sec	or 5.60 x 10 ⁻¹⁵ m/s	
Perchloroethylene (pce)	See Note 6		1.35 x 10 ⁻¹⁰ m ² /sec	or 5.57 x 10 ⁻¹⁵ m/s	
Cold Temperature Impact	ASTM D746	-40	° F	-40)° C
Maximum Static Use Temperature		180	°F	82	° C
	FACTOF	RY SEAM REQUIREN	NENTS		
Bonded Seam Strength	ASTM D6392 Mod. 5	57 lbs/in.	75 lbs/in.	100 N/cm	131 N/cm

Bonded Seam Strength	ASTM D6392 Mod. 5	57 lbs/in.	75 lbs/in.	100 N/cm	131 N/cm
Seam Peel Adhesion	ASTM D6392 Mod. ⁵	45 lbs/in.	60 lbs/in.	79 N/cm	105 N/cm
r					

Viaflex performs seam testing at 20" per minute.

⁶ Aqueous Phase Film Permeance.

QUEODS Pridse Prill Perificance. Permeation of Volatile Organic Compounds through EVOH Thin Film Membranes and Coextruded LLDPE/EVOH/ LLDPE Geomembranes, McWaters and Rowe, Journal of Geotechnical and Geoenvironmental EngineeringO ASCE/ September 2015. (Permeation is the Permeation Coefficient adjusted to actual film thickness - calculated at 1 kg/m³.)

September 2015. (Permeation is the Permeation Coefficient adjusted to actual film thickness - calculated a1 kg/m²) The study used to determine PCE and TCE is titled: Evaluation of fOCE & TCE through high performance geomembranes by Di Battista and Rowe, Queens University 8 Feb 2018. No carbon black in barrier layers. The study used to determine diffusion coefficients is titled: Hydrogen Sulfide (H₂S) Transport through Simulated Interim Covers with Conventional and Co-Extruded Ethylene-Vinyl Alcohol (EVOH) Geomembranes.

Absolute Barrier® Y30BAC is a seven-layer co-extruded geomembrane consisting of very flexible, linear-low-density polyethylene (LLDPE) with an inner core of chemically resistant EVOH barrier resin, designed specifically as a barrier against radon, methane and VOCs. High strength LLDPE provides exceptional tear and impact resistance. A robust stabilization package that exceeds the industry standard; provides long-term protection from thermal oxidation and ultraviolet degradation in exposed applications.

Note: To the best of our knowledge, unless otherwise stated, these are typical property values and are intended as guides only, not as specification limits. Chemical resistance, odor transmission, longevity as well as other performance criteria is not implied or given and actual testing must be performed for applicability in specific applications and/or conditions. VIAFLEX MAKES NO WARRANTIES AS TO THE FITNESS FOR A SPECIFIC USE OR MERCHANTABILITY OF PRODUCTS REFERRED TO, no guarantee of satisfactory results from reliance upon contained information or recommendations and disclaims all liability for resulting loss or damage. Limited Warranty available at www.viaflex.com

VIAFLEX, INC.

Scan QR Code to download technical data sheets.

821 W Algonquin Street Sioux Falls, SD 57104 Ph: +1 (605) 335-0174 • TF: +1 (800) 635-3456 © 2022 VIAFLEX, INC. All rights reserved.

sales@viaflex.com www.viaflex.com

Active Vapor Management System Plans

PAGE INTENTIONALLY LEFT BLANK

TO BE REPLACED WITH UPDATED ATTACHMENTS REFLECTING 30-MIL VAPOR BARRIER

WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY

WASHINGTON D.C. AREA METRO **SECTION T06**

OFFICE OF CAPITAL PROGRAM DELIVERY

DESIGN BUILDER

CLARK CONSTRUCTION, LLC 7500 Old Georgetown Road Bethesda, MD 20814 (301) 272-8100

DESIGN LEAD

STV INC 7125 Ambassador Road, Suite 200 Baltimore, MD 21244-2727 (410) 944-9112

ARCHITECTURAL-LEED

WENDEL 603 King Street, 4th Floor, Alexandria, VA 22314 (703)299-8718

metro

COVER SHEET

CONTRACT #FQ19144N - DECEMBER 21, 2023 NORTHERN BUS DIVISION REPLACEMENT VAPOR MITIGATION PACKAGE -ISSED FOR CONSTRUCTION

CONSULTANT DESIGN TEAM

STRUCTURAL-INDUSTRIAL-CIVIL SIGNAGE

STV INC 7125 Ambassador Road, Suite 200 Baltimore, MD 21244-2727 (410) 944-9112

> EMC2, INC. 10110 Molecular Drive, Suite 314 Rockville, MD 20850 (301) 424-8696

APPLE DESIGNS INC. 3739 National Drive Suite 228 Raleigh, NC 27612

HISTORICAL ARCHITECTURE

BEYER BLINDER BELLE ARCHITECTS & PLANNERS LLP 3307 M Street, NW, Suite 301 Washington, DC 20007 (202)683-1481

EPCM, INC. 9006 Fern Park Drive, Suite B, 2nd Floor Burke, VA 22015-1602 (703)503-0900

PLUMBING-MECHANICAL-FIRE PROTECTION

MIN ENGINEERING, INC. **10 SUDBROOK LANE** PIKESVILLE, MD 21208 (410) 486-4692

		DRAWING INDEX - VOLUME 1		DRAWING INDEX - VOLUME 1 DRAWING INDEX - VOLUME		DRAWING INDEX - VOLUME 1						
				-			LATEOT					
SHEET NO.	NO.	SHEET NAME	REVISION DATE	SHEET NO.	NO.	SHEET NAME	REVISION	DATE	SHEET NO.	NO.	SHEET NAME	F
	· ·			M1323	T502	TRAFFIC CONTROL PLAN -DETAILS 1	IFC	3/24/2023	M1323	S101S	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA S	
GENERAL				M1323	T503	TRAFFIC CONTROL PLAN -DETAILS 2	IFC	3/24/2023	M1323	S101T	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA T	
M1323-I M1323-II	G001 SHEET INDEX PAC	3E 2	REV 1 07/13/2023	M1323	T003	SIGNING AND PAVEMENT MARKING GENERAL NOTES AND LEGEND	IFC	3/24/2023	M1323	S1010	MAINTENANCE & OPERATIONS LEVEL FRAMING PLAN - AREA A	
1011323-11				M1323	T104	EXISTING AND PROPOSED SIGNING AND PAVEMENT MARKING PLAN - 1	IFC	3/24/2023	M1323	S102B	MAINTENANCE & OPERATIONS LEVEL FRAMING PLAN - AREA B	
CIVIL				M1323	T105	EXISTING AND PROPOSED SIGNING AND PAVEMENT MARKING PLAN - 2	IFC	3/24/2023	M1323	S102C	MAINTENANCE & OPERATIONS LEVEL FRAMING PLAN - AREA C	
M1323	C001 STANDARD SYMB	OLS AND ABBREVIATIONS - 1	IFC 3/24/2023	M1323	T106	EXISTING AND PROPOSED SIGNING AND PAVEMENT MARKING PLAN - 3	IFC	3/24/2023	M1323	S102D	MAINTENANCE & OPERATIONS LEVEL FRAMING PLAN - AREA D	
M1323	C002 STANDARD SYMB	OLS AND ABBREVIATIONS - 2	IFC 3/24/2023	M1323	T107	EXISTING AND PROPOSED SIGNING AND PAVEMENT MARKING PLAN - 4	IFC	3/24/2023	M1323	S222	FAÇADE FRAMING ELEVATIONS	
M1323	C104 EXISTING CONDIT	IONS PLAN - 1	IFC 3/24/2023	M1323	T108	PROPOSED SIGN SCHEDULE - 1	IFC	3/24/2023	M1323	S223 S224	FAÇADE FRAMING ELEVATIONS	
M1323	C105 EXISTING CONDIT	IONS PLAN - 2	IFC 3/24/2023	M1323	T602	PROPOSED SIGN SCHEDULE - 2	IFC	3/24/2023	M1323	S225	FAÇADE FRAMING ELEVATIONS	
M1323	C107 EXISTING CONDIT	10NS PLAN - 4	IFC 3/24/2023	M1323	T603	SIGN DETAILS - 1	IFC	3/24/2023	M1323	S226	FAÇADE FRAMING ELEVATIONS	
M1323	C108 EXISTING CONDIT	IONS PLAN - 5	IFC 3/24/2023	M1323	T604	SIGN DETAILS - 2	IFC	3/24/2023	M1323	S227	FAÇADE SUPPORT DETAILS	
M1323	C003 GEOMETRY PLAN		IFC 3/24/2023	M1323	T605	SIGN DETAILS - 3	IFC	3/24/2023	M1323	S230	FAÇADE SUPPORT DETAILS	
M1323	C201 TYPICAL SECTION	IS	IFC 3/24/2023	M1323	1606 T607	STREET NAME SIGN - 1	IFC	3/24/2023	M1323	S301	BUILDING SECTIONS	
M1323	C109 PAVEMENT PLAN		IFC 3/24/2023	M1323	T608	STREET NAME SIGN - 2	IFC	3/24/2023	M1323	S321	STAIR AND ELEVATOR ENLARGED FRAMING PLANS	
M1323	C111 PAVEMENT PLAN	- 3	IFC 3/24/2023	M1323	T609	STREET NAME SIGN - 4	IFC	3/24/2023	M1323	S327	STAIR AND ELEVATOR ENLARGED FRAMING PLANS	
M1323	C112 PAVEMENT PLAN	- 4	IFC 3/24/2023	M1323	T610	STREET NAME SIGN - 5	IFC	3/24/2023	M1323	S329	STAIR AND ELEVATOR ENLARGED FRAMING PLANS	
M1323	C113 PAVEMENT PLAN	- 5	IFC 3/24/2023]					M1323	S331	STAIR SECTIONS	
M1323	C114 PROPOSED GRAD	DING PLAN - 1	IFC 3/24/2023	CORROSION		N			M1323	S401		
M1323	C115 PROPOSED GRAD	DING PLAN - 2	IFC 3/24/2023	M1323	CP100	CORROSION GENERAL NOTES	IFC	6/26/2023	M1323	S402	SWM STRUCTURE - PLAN AND SECTION	
M1323	C110 PROPOSED GRAL		IFC 3/24/2023	M1323	CP101		IFC	6/26/2023	M1323	S404	SWM STRUCTURE - MATERIAL SPECIFICATIONS	
M1323	C118 PROPOSED GRAD	DING PLAN - 5	IFC 3/24/2023	M1323	CP120		IFC	6/26/2023	M1323	S405	SWM STRUCTURE - REINFORCING PLAN AND SECTIONS	
M1323	C119 DRIVEWAY PROFI	LES	IFC 3/24/2023	M1323	CP124	CORROSION PROTECTION PLAN - 5	IFC	6/26/2023	M1323	S406	SWM STRUCTURE - REBAR DETAILS	
M1323	C501 DRIVEWAY AND C	URB SITE DETAILS - 1	IFC 3/24/2023	M1323	CP501	CORROSION PROTECTION DETAILS - 1	IFC	6/26/2023	M1323	S407	60,000 GALLON WASH-WATER TANK	
M1323	C502 DRIVEWAY AND C	URB SITE DETAILS - 2	IFC 3/24/2023	M1323	CP502	CORROSION PROTECTION DETAILS - 2	IFC	6/26/2023	M1323	S408	60,000 GALLON WASH-WATER TANK - SECTIONS AND DETAILS	
M1323	C503 DRIVEWAY AND C	URB SITE DETAILS - 3	IFC 3/24/2023	M1323	CP503	CORROSION PROTECTION DETAILS - 3	IFC	6/26/2023	M1323	S409	UST VAULT - PLAN AND SECTIONS	
M1323	C504 DRIVEWAY AND C	URB SITE DETAILS - 4	IFC 3/24/2023						M1323	S411	OWS TANK	
M1323	C506 DRIVEWAY AND C	URB SITE DETAILS - 6	IFC 3/24/2023			GENERAL STRUCTURAL NOTES I	IFC	3/24/2023	M1323	S413	UNDERSLAB DRAINAGE PLAN	
M1323	C507 DRIVEWAY AND C	URB SITE DETAILS - 7	IFC 3/24/2023	M1323	S002	GENERAL STRUCTURAL NOTES II	IFC	3/24/2023	M1323	S414	UNDERSLAB DRAINAGE DETAILS	
M1323	C120 UTILITIES PLAN -	1	IFC 6/26/2023	M1323	S003	GENERAL STRUCTURAL NOTES III	IFC	3/24/2023	M1323	S415	COLLECTOR PIPE PROFILES - 1	
M1323	C121 UTILITIES PLAN - 2	2	IFC 6/26/2023	M1323	S004	STATEMENT OF STRUCTURAL SPECIAL INSPECTIONS I	IFC	3/24/2023	M1323	S417	STORM DRAIN AND SANITARY PIPING LAYOUT	
M1323	C122 UTILITIES PLAN - 3	3	IFC 6/26/2023	M1323	S005	STATEMENT OF STRUCTURAL SPECIAL INSPECTIONS II	IFC	3/24/2023	M1323		STORM DRAIN DETAILS	
M1323	C124 UTILITIES PLAN - 4	5	IFC 6/26/2023	M1323	S006		IFC	3/24/2023	M1323	S421	SWM STRUCTURE - SECTIONS	
M1323	C125 STORM SEWER P	ROFILES - 1	IFC 6/26/2023	M1323	S011	MAINTENANCE & OPERATIONS LEVEL LOADING DIAGRAM	IFC	3/24/2023	M1323	S422	SWM STRUCTURE - SECTIONS	
M1323	C126 STORM SEWER P	ROFILES - 2	IFC 6/26/2023	M1323	S012	LOW ROOF AND CAR PARKING LEVEL LOADING DIAGRAM	IFC	3/24/2023	M1323	S423	TYPICAL DETAILS	
M1323	C127 COLLECTOR PIPE	PROFILES	IFC 6/26/2023	M1323	S014	PENTHOUSE ROOF LEVEL LOADING DIAGRAM	IFC	3/24/2023	M1323	S424		
M1323	C128 SWM STRUCTURE	E – CISTERN TANK PIPING PROFILE	IFC 6/26/2023	M1323	S021	FOUNDATION OVERALL PLAN	REV 1	7/13/2023	M1323		IST VALUET - SECTIONS AND DETAIL	
M1323	C601 UTILITY DETAILS	.1	IFC 6/26/2023	M1323	S022	BUS STORAGE LEVEL OVERALL GRADE SLAB PLAN	REV 1	7/13/2023	M1323	S501	FOUNDATION WALL LAYOUT AND SCHEDULE	
M1323	C602 UTILITY DETAILS	2	IFC 6/26/2023	- M1323	S023	MAINTENANCE & OPERATIONS LEVEL OVERALL FRAMING PLAN		3/24/2023	M1323	S502	FOUNDATION SECTIONS	
M1323	C603 UTILITY DETAILS	- 3	IFC 6/26/2023	M1323	S030	FOUNDATION DESIGN CONCEPT PART PLAN - AREA I	IFC	3/24/2023	M1323	S503	FOUNDATION SECTIONS	
M1323	C604 UTILITY DETAILS -	- 4	IFC 6/26/2023	M1323	S032	FOUNDATION DESIGN CONCEPT PART PLAN - AREA III	REV 1	7/13/2023	M1323	S504	FOUNDATION SECTIONS	
M1323	C605 UTILITY DETAILS	-5	IFC 6/26/2023	M1323	S033	FOUNDATION DESIGN CONCEPT PART PLAN - AREA IV	REV 1	7/13/2023	M1323	S505	FOUNDATION SECTIONS	
M1323	C606 UTILITY DETAILS -	6	IFC 6/26/2023	M1323	S034	BUS STORAGE LEVEL DESIGN CONCEPT PART PLAN - AREA I	IFC	6/26/2023	M1323	S507	FOUNDATION SECTIONS	
M1323	CS100 FUEL DRIVEWAY	RETAINING WALL PLAN AND ELEVATION	IFC 3/24/2023	- M1323	S035	BUS STORAGE LEVEL DESIGN CONCEPT PART PLAN - AREA II	IFC	6/26/2023	M1323	S508	FOUNDATION SECTIONS	
M1323	CS101 FUEL DRIVEWAY	RETAINING WALL DETAILS	IFC 3/24/2023	- M1323	S036	BUS STORAGE LEVEL DESIGN CONCEPT PART PLAN - AREA III	REV 1	7/13/2023	M1323	S509	FOUNDATION SECTIONS	
M1323	D101 DRAINAGE AREA	MAP	IFC 6/26/2023	M1323	S038	MAINTENANCE & OPERATIONS LEVEL DESIGN CONCEPT PART PLAN - AREA I	IFC	3/24/2023	M1323	S524	TYPICAL STEEL DETAILS	
M1323	D101A SITE DRAINAGE A	REA MAP	IFC 6/26/2023	M1323	S100A	FOUNDATION PLAN - AREA A	IFC	3/24/2023	M1323	S531	TYPICAL CONCRETE DETAILS	
M1323	D102 DRAINAGE DESIG	N COMPUTATIONS	IFC 6/26/2023	M1323	S100B	FOUNDATION PLAN - AREA B	IFC	3/24/2023	M1323	S533		
M1323	FC101 FROSION AND SE		IFC 6/26/2023	M1323	S100C	FOUNDATION PLAN - AREA C	IFC	3/24/2023	M1323	S534	TYPICAL CONCRETE DETAILS	
M1323	EC102 EROSION AND SE	DIMENT CONTROL NOTES AND DETAILS - 2	IFC 3/24/2023	- M1323	S100D	FOUNDATION PLAN - AREA D	IFC	3/24/2023	M1323	S535	TYPICAL CONCRETE DETAILS	
M1323	EC103 EROSION AND SE	DIMENT CONTROL NOTES AND DETAILS - 3	IFC 3/24/2023	M1323	S100E		IFC	3/24/2023	M1323	S536	TYPICAL CONCRETE DETAILS	
M1323	EC104 EROSION AND SE	DIMENT CONTROL PLAN - 1	IFC 3/24/2023	M1323	S100G	FOUNDATION PLAN - AREA G	IFC	3/24/2023	M1323	S601	FOUNDATION SCHEDULE AND DETAILS	
M1323	EC105 EROSION AND SE	DIMENT CONTROL PLAN - 2	IFC 3/24/2023	M1323	S100H	FOUNDATION PLAN - AREA H	IFC	3/24/2023	M1323	S602	FOUNDATION SCHEDULE AND DETAILS	
M1323	EC106 EROSION AND SE	DIMENT CONTROL PLAN - 3	IFC 3/24/2023	M1323	S100J	FOUNDATION PLAN - AREA J	IFC	3/24/2023	M1323	S611		
M1323	EC107 EROSION AND SE	DIMENT CONTROL PLAN - 4	IFC 3/24/2023	- M1323	S100K	FOUNDATION PLAN - AREA K	IFC	3/24/2023	M1323	S612	COLUMN SCHEDULE	
M1323	L104 LANDSCAPE PLAN	V-1	IFC 3/24/2023	M1323	S100L			3/24/2023	M1323	S613	COLUMN SCHEDULE	
M1323	L105 LANDSCAPE PLAN	1-2	IFC 3/24/2023	M1323	S100M	FOUNDATION PLAN - AREA N	IFC	3/24/2023	M1323	S614	COLUMN SCHEDULE	
M1323	L106 LANDSCAPE PLAN	1-3	IFC 3/24/2023	M1323	S100P	FOUNDATION PLAN - AREA P	IFC	3/24/2023	DILLING			
M1323	L107 LANDSCAPE PLAN	N-4	IFC 3/24/2023	M1323	S100Q	FOUNDATION PLAN - AREA Q	IFC	3/24/2023	PLUMBING	P001		
M1323		N - D ES AND DETAILS - 1	IFC 3/24/2023	M1323	S100R	FOUNDATION PLAN - AREA R	IFC	3/24/2023	M1323	P002	UNDERSLAB PLUMBING PLAN - OVERALL	
M1323	L502 LANDSCAPE NOT	ES AND DETAILS - 2	IFC 3/24/2023	M1323	S100S	FOUNDATION PLAN - AREA S		3/24/2023	M1323	P100A	UNDERSLAB PLUMBING PLAN - AREA A	
M1323	L503 SITE FURNISHING	S	IFC 3/24/2023	M1323	S1001 S1001			3/24/2023	M1323	P100B	UNDERSLAB PLUMBING PLAN - AREA B	
M1323	CE100 STREETLIGHT PL/	AN - GENERAL NOTES	IFC 3/24/2023	M1323	S1000	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA A	REV 1	7/13/2023	M1323	P100C	UNDERSLAB PLUMBING PLAN - AREA C	
M1323	CE100A STREETLIGHT PL/	AN - TABLES	IFC 3/24/2023	M1323	S101B	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA B	REV 1	7/13/2023	M1323	P100D	UNDERSLAB PLUMBING PLAN - AREA D	
M1323	CE101 EXISTING STREET	LIGHT REMOVAL PLAN - 1	IFC 3/24/2023	M1323	S101C	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA C	REV 1	7/13/2023	M1323	P100E	UNDERSLAB PLUMBING PLAN - AREA E	
M1323	CE102 EXISTING STREET	LIGHT REMOVAL PLAN - 2	IFC 3/24/2023	M1323	S101D	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA D	REV 1	7/13/2023	M1323	P100G	UNDERSLAB PLUMBING PLAN - AREA G	
M1323	CE104 EXISTING STREET	LIGHT REMOVAL PLAN - 4	IFC 3/24/2023	M1323	S101E	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA E		7/13/2023	M1323	P100H	UNDERSLAB PLUMBING PLAN - AREA H	
M1323	CE105 EXISTING STREET	LIGHT REMOVAL PLAN - 5	IFC 3/24/2023	M1323	S101F	BUS STORAGE LEVEL GRADE SLAD PLAN - AREA P BUS STORAGE LEVEL GRADE SI AB PI AN - AREA G	REV 1	7/13/2023	M1323	P100J	UNDERSLAB PLUMBING PLAN - AREA J	
M1323	CE201 PROPOSED STRE	ETLIGHT PLAN - 1	IFC 3/24/2023	M1323	S101H	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA H	REV 1	7/13/2023	M1323	P100K		
M1323	CE202 PROPOSED STRE	ETLIGHT PLAN - 2	IFC 3/24/2023	M1323	S101J	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA J	REV 1	7/13/2023	M1323	P100L		
M1323	CE203 PROPOSED STRE		IFC 3/24/2023	M1323	S101K	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA K	REV 1	7/13/2023	M1323	P100N	UNDERSLAB PLUMBING PLAN - AREA N	
M1323	CE205 PROPOSED STRE	ETLIGHT PLAN - 5	IFC 3/24/2023	M1323	S101L	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA L	REV 1	7/13/2023	M1323	P100P	UNDERSLAB PLUMBING PLAN - AREA P	
M1323	CE501 STREETLIGHT PL/	AN - DETAILS 1	IFC 3/24/2023	M1323	S101M	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA M		7/13/2023	M1323	P100Q	UNDERSLAB PLUMBING PLAN - AREA Q	
M1323	CE502 STREETLIGHT PL/	AN - DETAILS 2	IFC 3/24/2023	M1323	S101P	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA N	REV 1	7/13/2023	M1323	P100R	UNDERSLAB PLUMBING PLAN - AREA R	
M1323	CE601 STREETLIGHT WI	RING	IFC 3/24/2023	M1323	S101Q	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA Q	REV 1	7/13/2023	M1323	P100S	UNDERSLAB PLUMBING PLAN - AREA S	
M1323	1002 TRAFFIC CONTRO	PL PLAN	IFC 3/24/2023	M1323	S101R	BUS STORAGE LEVEL GRADE SLAB PLAN - AREA R	REV 1	7/13/2023	M1323	P100U	UNDERSLAB PLUMBING PLAN - AREA U	
		í		1								
		REFERENCE DRAWINGS			REVI					ΔΝΛ	REA TRANSIT ALITHORITY	
	RB 07/12/2023	NUMBER TITLE		DATE	NUM							
				07/13/2023 R	EV 1 ISSUE				םם ואדו			
DRAWN	RB 07/12/2023			12/21/2023 R	EV 2 ISSUE	U FOR CONSTRUCTION UF						
	DATE							EN(A - GENخ	NERAL		

			REFERENCE DRAWINGS			REVISIONS			
DESIGNED	RB	07/12/2023	NUMBER	TITLE	DATE	NUM			
_		DATE			07/13/2023	REV 1	ISSUED FOR CONSTR		
DRAWN	RB	<u>07/12/2023</u> DATE			12/2 1/2023	REV 2	ISSUED FOR CONSTR		
CHECKED	MR	07/13/2023							
		DATE							

APPROVED

DATE

APPROVED

contract no FQ19144N

	DATE
REV 1	7/13/2023
REV 1	7/13/2023
IFC	3/24/2023
IFC	3/24/2023
IFC	3/24/2023
IFC	6/26/2023
IFC	3/24/2023
IFC	6/26/2023
IFC IFC	6/26/2023 6/26/2023
IFC	6/26/2023
IFC	6/26/2023
IFC	3/24/2023
REV 1	7/13/2023
IFC	3/24/2023
IFC IFC	3/24/2023 3/24/2023
IFC	3/24/2023
IFC	3/24/2023
IFC IFC	3/24/2023 3/24/2023
IFC	3/24/2023
IFC IFC	3/24/2023 3/24/2023
IFC	3/24/2023
REV 1	7/13/2023
IFC IFC	3/24/2023 3/24/2023
IFC	3/24/2023
IFC	3/24/2023
	6/26/2023
REV 1	7/13/2023
IFC	6/26/2023
IFC	6/26/2023
IFC	3/24/2023
IFC	3/24/2023
IFC	3/24/2023
IFC IFC	3/24/2023 3/24/2023
IFC	3/24/2023
IFC	3/24/2023
IFC	3/24/2023
IFC	3/24/2023
IFC IFC	3/24/2023 3/24/2023
IFC	3/24/2023
IFC	3/24/2023
	3/24/2023
IFC	3/24/2023
IFC	3/24/2023
	3/24/2023
IFC	3/24/2023
	5/24/2025
	3/24/2023 3/24/2023
IFC IFC	3/24/2023 3/24/2023 3/24/2023

DESIGN PACKAGE ISSUED FOR CONSTRUCTION SHEET INDEX PAGE 1 OF 2

0.	SCALE	DRAWING NO.	SHEET NO.
	NO SCALE	T06-G001	M1323-I

		DRAWING INDEX - VOLUME 2		
SHEET NO.	DRAWING NO.	SHEET NAME	LATEST REVISION	DATE
PLUMBING				
M1323	P101H1	BUS STORAGE DRAINAGE PLAN - AREA H	IFC	3/24/2023
M1323	P201M1	BUS STORAGE DOMESTIC WATER & GAS PLAN - AREA M	IFC	3/24/2023
M1323	P501		IFC	3/24/2023
M1323	P601		IFC	3/24/2023
M1323	P701		IFC	3/24/2023
M1323	P702	UNDERSLAB SANITARY RISER DIAGRAM	IFC	3/24/2023
111020				
ELECTRICAL M1323	- GENERAL	ELECTRICAL GENERAL NOTES LEGEND AND ABBREV/JATIONS	IFC	3/24/2023
M1323	E101	ELECTRICAL SITE - OVERALL PLAN	IFC	3/24/2023
M1323	E101C	ELECTRICAL SITE - BUS STORAGE - AREA C	IFC	3/24/2023
M1323	E102A	ELECTRICAL SITE - BUS MAINTENANCE - AREA A	IFC	3/24/2023
M1323	E102M	ELECTRICAL SITE - BUS MAINTENANCE - AREA M	IFC	3/24/2023
M1323	E103	UNDERSLAB GROUNDING - OVERALL PLAN	IFC	3/24/2023
M1323	E103C	UNDERSLAB GROUNDING PLAN - AREA C	IFC	3/24/2023
M1323	E103F	UNDERSLAB GROUNDING PLAN - AREA F	IFC	3/24/2023
M1323	E103G	UNDERSLAB GROUNDING PLAN - AREA G	IFC	3/24/2023
M1323	E103K	UNDERSLAB GROUNDING PLAN - AREA K	IFC	3/24/2023
M1323	E103L	UNDERSLAB GROUNDING PLAN - AREA L	IFC	3/24/2023
M1323	E103P	UNDERSLAB GROUNDING PLAN - AREA P	IFC	3/24/2023
M1323	E103Q	UNDERSLAB GROUNDING PLAN - AREA Q	IFC	3/24/2023
M1323	E103S	UNDERSLAB GROUNDING PLAN - AREA S	IFC	3/24/2023
M1323	E103T	UNDERSLAB GROUNDING PLAN - AREA T	IFC	3/24/2023
M1323	E103U	UNDERSLAB GROUNDING PLAN - AREA U	IFC	3/24/2023
M1323	E104Q	UNDERSLAB ELECTRICAL PLAN - AREA Q	IFC	3/24/2023
M1323	E104R	UNDERSLAB ELECTRICAL PLAN - AREA R	IFC	3/24/2023
M1323	E104U	UNDERSLAB ELECTRICAL PLAN - AREA U	IFC	3/24/2023
M1323	E301	ELECTRICAL SITE - SECTION DETAILS I	IFC	3/24/2023
M1323	E302	ELECTRICAL SITE - SECTION DETAILS II	IFC	3/24/2023
M1323	E303	ELECTRICAL SITE - SECTION DETAILS III	IFC	3/24/2023
M1323	E304	ELECTRICAL SITE - SECTION DETAILS IV	IFC	3/24/2023
M1323	E305	ELECTRICAL SITE - SECTION DETAILS IV	IFC	3/24/2023
M1323	E523	DUCTBANK, LIGHT POLE, AND GROUNDING DETAIL	IFC	3/24/2023
M1323	E007		IFC	3/24/2023
M1323 M1323	EL011 EL012	LIGHTING PLAN - 1 LIGHTING PLAN - 2	IFC IFC	3/24/2023 3/24/2023
INDUSTRIAL	PLUMBING			
M1323	IP001	ABBREVIATIONS, NOTES, & SYMBOLS	IFC	3/24/2023
M1323	IP100	UNDERGROUND BUS STORAGE - OVERALL PLAN	IFC	3/24/2023
M1323	IP100R	UNDERGROUND BUS STORAGE FLOOR PLAN - AREA R	IFC	3/24/2023
M1323	IP100S	UNDERGROUND BUS STORAGE FLOOR PLAN - AREA S	IFC	3/24/2023
M1323	IP100T	UNDERGROUND BUS STORAGE FLOOR PLAN - AREA T	IFC	3/24/2023
M1323	IP401	FUELING TANK ENLARGED PLAN	IFC	3/24/2023
M1323	IP502	DETAILS SHEET 2	IFC	3/24/2023
M1323	IP503	DETAILS SHEET 3	IFC	3/24/2023
M1323	IP606	FUELING SCHEMATICS SHEET 1	IFC	3/24/2023
M1323	IP607	FUELING SCHEMATICS SHEET 2	IFC	3/24/2023
	GATION			
M1323	VM10	UNDERGROUND BUS STORAGE PLAN - OVERALL	IFC	9/14/2023
M1323	VM10A	UNDERGROUND BUS STORAGE PLAN - AREA A	IFC	9/14/2023
M1323	VM10B	UNDERGROUND BUS STORAGE PLAN - AREA B	IFC	9/14/2023
M1323	VM10C	UNDERGROUND BUS STORAGE PLAN - AREA C	IFC	9/14/2023
M1323	VM10D	UNDERGROUND BUS STORAGE PLAN - ARFA D	IFC	9/14/2023
M1222			IFC	9/14/2022
IVI1323	VINIOE			0/4 4/0000
M1323	VIVITUE	UNDERGROUND BUS STORAGE PLAN - AREA F		9/14/2023
M1323	VM10G	UNDERGROUND BUS STORAGE PLAN - AREA G	IFC	9/14/2023
M1323	VM10H	UNDERGROUND BUS STORAGE PLAN - AREA H	IFC	9/14/2023
M1323	VM10J	UNDERGROUND BUS STORAGE PLAN - AREA J	IFC	9/14/2023
M1222	VM10K		IFC	9/14/2023
111323				0/4 4/2020
M1323	VIVITUL	UNDERGROUND BUS STORAGE PLAN - AREA L		5/14/2023
M1323	VM10M	UNDERGROUND BUS STORAGE PLAN - AREA M	IFC	9/14/2023
M1323	VM10N	UNDERGROUND BUS STORAGE PLAN - AREA N	IFC	9/14/2023
M1323	VM10P	UNDERGROUND BUS STORAGE PLAN - AREA P	IFC	9/14/2023
M1222	VM100		IFC	9/14/2023
N4000				0/14/2020
M1323	VIVITUR	UNDERGROUND BUS STORAGE PLAN - AREA R		J/ 14/2023
M1323	VM10S	UNDERGROUND BUS STORAGE PLAN - AREA S	IFC	9/14/2023
	VM10T	UNDERGROUND BUS STORAGE PLAN - AREA T	IFC	9/14/2023
M1323				
M1323 M1323	VM10U	UNDERGROUND BUS STORAGE PLAN - AREA U	IFC	9/14/2023
M1323 M1323 M1323	VM10U VM401	UNDERGROUND BUS STORAGE PLAN - AREA U VAPOR MANAGEMENT SYSTEM DETAILS	IFC IFC	9/14/2023 9/14/2023
M1323 M1323 M1323	VM10U VM401	UNDERGROUND BUS STORAGE PLAN - AREA U VAPOR MANAGEMENT SYSTEM DETAILS	IFC IFC	9/14/2023 9/14/2023

	REFERENCE DRAWINGS	REVISIONS	M WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY
DESIGNED	NUMBER TITLE	DATE NUM DESCRIPTION	metro
DATE DRAWN RB 06/25/2023		12/21/2023 REV 2 ISSUED FOR CONSTRUCTION	OFFICE OF CAPITAL PROGRAM DELIVERY
			ENGA - GENERAL
CHECKED MIR 00/20/2023 DATE			APPROVED APPROVED CONTR
			DATE DATE FQ19

).	SCALE	DRAWING NO.	SHEET NO.
	NO SCALE	T06-G002	M1323-I

"PROFESSIONAL CERTIFICATION: I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE DISTRICT OF COLUMBIA."

LICENSE No.

EXPIRATION DATE:

NORTHERN BUS DIVISION REPLACEMENT DESIGN PACKAGE ISSUED FOR CONSTRUCTION SHEET INDEX PAGE 2 OF 2

/17/2023 2:21:41 PM

	GENERA 1. SE 2. CA INS 3. TEL 8	L NOTES: E VM401 FOR VAPOR MANAG P 6-INCH PVC TWO FEET AB STALL 1/4-INCH SAMPLING PO RRAVENT CONNECTION TO I COMMENDED END OUT AND	SEMENT DETAILS. OVE CONCRETE SLAB AND ORT VALVE IN CAP. PVC PER MANUFACTURER PIPE ADAPTER.
	$\frac{7}{2}$		
	-2 N -1 N KEY P A KEY P A KEY P A V V V V V V V V V V V V V V V V V V	G L Q U F K P E J N D H M PROFESSIONAL CE DOCUMENTS WERE DOCUMENTS WERE IMA DULY LICENS AL ENGINE * DIVISION REPLACE	J T S R B R ERTIFICATION: I HEREBY CERTIFY THAT THESE EPREPARED OR APPROVED BY ME, AND THAT EPREPARED OR APPROVED BY ME, AND THAT ED PROFESSIONAL ENGINEER UNDER THE RCT OF COLUMBIA." PE921787 08/31/2024
UN	ISSUED FO	R CONSTRUCTIO	- OVERALL
N.	1" = 40'-0"	T06-VM10 - OVERALL	SHELI NU.

ION	M metro	WASHINGTON METROPOLITAN AREA TRANSIT AUTHO	DRITY	
		OFFICE OF CAPITAL PROGRAM DELIVERY		
	APPROVED	DATE APPROVED	DATE	CONTRACT N FQ19144N

1	N G C F B E A D KEY PLAN KEY PLAN S S R C F B E A D KEY PLAN	L Q K P J N H M H M	U T S R NAL CERTIF S WERE PRE LICENSED P IE DISTRICT	ICATION: I HEREBY CERTIFY THAT THESE EPARED OR APPROVED BY ME, AND THAT ROFESSIONAL ENGINEER UNDER THE OF COLUMBIA."
	B 66D7CEED72DA446	LICENSE No EXPIRATION	 I DATE:	PE921787 08/31/2024
NORTHER ISSI UNDERGROI	N BUS DIVIS JED FOR CO JND BUS ST(ION REP NSTRUC DRAGE F	LACEI TION PLAN -	MENT AREA A
NO. SCALE N 1/8" = 1'-0"	DRAWING T06-VN	в NO. И10А		SHEET NO.

2

00

 \leq

SEE

ILINE

 $\overline{\mathbf{O}}$ AT

GENERAL NOTES:

- SEE VM401 FOR VAPOR MANAGEMENT DETAILS.
 CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP.
 TERRAVENT CONNECTION TO PVC PER MANUFACTURER RECOMMENDED END OUT AND PIPE ADAPTER.

	M metro	WASHINGTON METROP	OLITAN AREA TRANS		
JN		OFFICE OF CAPIT/	AL PROGRAM DELIVERY		
	APPROVED	DATE	APPROVED	DATE	CONTRACT

		5			
		GENERA 1. SE 2. CA INS 3. TE RE	L NOTES: E VM401 FOR VAPOR MANA P 6-INCH PVC TWO FEET AI STALL 1/4-INCH SAMPLING F RRAVENT CONNECTION TO COMMENDED END OUT ANI	GEMENT DETAILS. BOVE CONCRETE SLAB PORT VALVE IN CAP. PVC PER MANUFACTU D PIPE ADAPTER.	AND RER
		-4			
		3			
		N C B	G L Q F K P E J N	U T S	
		KEY F	D H M PLAN	R	
		TRICT O STRICT O STRICTO	PROFESSIONAL C DOCUMENTS WER I AM A DULY LICEN LAWS OF THE DIST LICENSE No. ENSED VAL ENGINE AUXION DATE	ERTIFICATION: I HEREBY CER E PREPARED OR APPROVED I ISED PROFESSIONAL ENGINEE IRICT OF COLUMBIA." PE921787 : 08/31/2024	TIFY THAT THESE BY ME, AND THAT R UNDER THE
U	NORTHER ISSI NDERGROU	N BUS UED FO JND BU	DIVISION REPLA R CONSTRUCTIONS STORAGE PLA	CEMENT DN N - AREA B	
Ю.	SCALE 1/8" = 1'-0"		DRAWING NO. T06-VM10B	SHEET NO.	

M metro	WASHINGTON METROPOLITAN AREA TRA	NSIT AUTHORITY
	OFFICE OF CAPITAL PROGRAM DELIVER	٦Y
APPROVED		

	N G C F K P B E J N A D H M	U T S R
	KEY PLAN "PROFESSIONAL "PROFESSIONAL DOCUMENTS WE IAM A DULY LICEL LICENSE No. BODTCEED72DA446 OCENSED 9/14/2023	CERTIFICATION: I HEREBY CERTIFY THAT THESE RE PREPARED OR APPROVED BY ME, AND THAT NSED PROFESSIONAL ENGINEER UNDER THE STRICT OF COLUMBIA." PE921787 E: 08/31/2024
NORTHE IS UNDERGR	RN BUS DIVISION REPLA SUED FOR CONSTRUCTION SUND BUS STORAGE PLA	CEMENT ON AN - AREA C
5. SCALE 1/8" = 1'-0"	DRAWING NO. T06-VM10C	SHEET NO.

GENERAL NOTES:

SEE VM401 FOR VAPOR MANAGEMENT DETAILS. 2. CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP. 3. TERRAVENT CONNECTION TO PVC PER MANUFACTURER RECOMMENDED END OUT AND PIPE ADAPTER.

:\Users\gamblet2\Documents\T06-INDUPLUM-NBusGarage-r22-VE_tim.gamble3JN99.rvt

8/17/2023 2:21:50 |

	GENERAI 1. SEI 2. CA INS 3. TEI REI	L NOTES: E VM401 FOR VAPOR MANAGEMENT I P 6-INCH PVC TWO FEET ABOVE CON STALL 1/4-INCH SAMPLING PORT VALV RRAVENT CONNECTION TO PVC PER COMMENDED END OUT AND PIPE AD/	DETAILS. CRETE SLAB AND 'E IN CAP. MANUFACTURER APTER.
		GLQU FKPT EJNS DHMR	
J	KEYP STRICT O STRICT O STRICT STRICT O STRICT O STRICT	F COLUME "PROFESSIONAL CERTIFICATION MESSIONAL CERTIFICATION DOCUMENTS WERE PREPARED IAM A DULY LICENSED PROFES IAM A DULY LICENSED PROFES IAM A DULY LICENSED PROFES LAWS OF THE DISTRICT OF COL NSED LICENSE No. PE9 AL ENG EXPIRATION DATE: 08/3	N: I HEREBY CERTIFY THAT THESE O OR APPROVED BY ME, AND THAT SIONAL ENGINEER UNDER THE UMBIA." 21787 31/2024
1U	NORTHERN BUS I ISSUED FO NDERGROUND BU	DIVISION REPLACEMEN R CONSTRUCTION S STORAGE PLAN - AR	NT EA D
NO. N	SCALE 1/8" = 1'-0"	drawing no. T06-VM10D	SHEET NO.

ION	M metro	WASHINGTON METROPOLITAN AREA TRANSIT AL	JTHORITY	
	-	OFFICE OF CAPITAL PROGRAM DELIVERY		
	APPROVED	DATE APPROVED	DATE	CONTRACT N FQ19144N

ION	M metro	WASHINGTON METROPOL	LITAN AREA TRAN	SIT AUTHORITY	
		OFFICE OF CAPITAL	PROGRAM DELIVERY		
	APPROVED	DATE	APPROVED	DATE	CONTRACT FQ19144N

	=	 GENERAL NOTES: SEE VM401 FOR VAPOR MANAGEMENT DETAILS. CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP. TERRAVENT CONNECTION TO PVC PER MANUFACTURER RECOMMENDED END OUT AND PIPE ADAPTER. 	
	5	N G U G U U F K P B E J N A D H M	SE
	NORTHEF	PROFESSIONAL CERTIFICATION: THEREBY CERTIFY THAT THES DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE DISTRICT OF COLUMBIA." LICENSE No	SE AT —
NO. N	NDERGRO SCALE 1/8" = 1'-0"	JND BUS STORAGE PLAN - AREA F DRAWING NO. T06-VM10F	

ON	M metro	WASHINGTON METROPOLITAN AREA	A TRANSIT AUTHORITY	
CTION		OFFICE OF CAPITAL PROGRAM D	ELIVERY	
	APPROVED	DATE	DATE	CONTRACT FQ19144N

	9		
	GENERA 1. SE 2. CA INS 3. TEL RE	L NOTES: E VM401 FOR VAPOR MANAGEMENT I P 6-INCH PVC TWO FEET ABOVE CON STALL 1/4-INCH SAMPLING PORT VALV RRAVENT CONNECTION TO PVC PER COMMENDED END OUT AND PIPE AD/	DETAILS. CRETE SLAB AND 'E IN CAP. MANUFACTURER APTER.
	N		
	7 C B A KEY P KEY P	G L Q U F K P T E J N S D H M R PLAN "PROFESSIONAL CERTIFICATION DOCUMENTS WERE PREPARED IAM A DULY LICENSED PROFESSIONAL CERTIFICATION DOCUMENTS WERE PREPARED MSED TOTAL AND ADDITION DATE: 08/	N: I HEREBY CERTIFY THAT THESE O OR APPROVED BY ME, AND THAT SIONAL ENGINEER UNDER THE UMBIA." 21787 31/2024
UN	NORTHERN BUS I ISSUED FO NDERGROUND BU	DIVISION REPLACEMEN R CONSTRUCTION S STORAGE PLAN - AR	NT EA G
IO.	SCALE 1/8" = 1'-0"	DRAWING NO. T06-VM10G	SHEET NO.

)			
		GENERAL NOTES: 1. SEE VM401 FOR VAPOR MA 2. CAP 6-INCH PVC TWO FEE INSTALL 1/4-INCH SAMPLIN	ANAGEMENT DETAILS. T ABOVE CONCRETE SLAB AND IG PORT VALVE IN CAP.
		3. TERRAVENT CONNECTION RECOMMENDED END OUT	TO PVC PER MANUFACTURER AND PIPE ADAPTER.
	2		
	-		
0			
	(1)	N	
		G L Q C F K P B E J N A D H M	U T S R
		KEY PLAN	
		TROFESSION DOCUMENTS I AM A DULY L LAWS OF THE LICENSE No. EXPIRATION D 9/14/2023	IAL CERTIFICATION: I HEREBY CERTIFY THAT THESE WERE PREPARED OR APPROVED BY ME, AND THAT ICENSED PROFESSIONAL ENGINEER UNDER THE DISTRICT OF COLUMBIA." PE921787 DATE: 08/31/2024
U	NORTHER ISSL INDERGROL	N BUS DIVISION REPL JED FOR CONSTRUC JND BUS STORAGE PI	ACEMENT FION _AN - AREA H
NO. N	SCALE 1/8" = 1'-0"	DRAWING NO. T06-VM10H	SHEET NO.

1	M metro W/	ASHINGTON METROPOLITAN AREA T	RANSIT AUTHORITY	
10N		OFFICE OF CAPITAL PROGRAM DELI	VERY	
	APPROVED	APPROVED		CONTRACT

		5	
		 GENERAL NOTES: 1. SEE VM401 FOR VAPOR MANA 2. CAP 6-INCH PVC TWO FEET AF INSTALL 1/4-INCH SAMPLING F 3. TERRAVENT CONNECTION TO RECOMMENDED END OUT AND 	AGEMENT DETAILS. BOVE CONCRETE SLAB AND PORT VALVE IN CAP. 9 PVC PER MANUFACTURER D PIPE ADAPTER.
	4		
	3		
		$N \xrightarrow{G} L Q$ $G \downarrow Q$	U T S R
		THE TILLAIN "PROFESSIONAL C DOCUMENTS WER I AM A DULY LICEN LAWS OF THE DIST 6607CEED72DA446 BOOMAL ENGINE 9/14/2023	CERTIFICATION: I HEREBY CERTIFY THAT THESE RE PREPARED OR APPROVED BY ME, AND THAT ISED PROFESSIONAL ENGINEER UNDER THE TRICT OF COLUMBIA." PE921787 : 08/31/2024
l	NORTHER ISSI JNDERGROI	N BUS DIVISION REPLA JED FOR CONSTRUCTIO JND BUS STORAGE PLA	CEMENT ON N - AREA J
0.	SCALE 1/8" = 1'-0"	DRAWING NO. T06-VM10J	SHEET NO.

ON	M metro	WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY	
		OFFICE OF CAPITAL PROGRAM DELIVERY	
	APPROVED	DATE APPROVED C	CONTRACT NO FQ19144N

	 GENERAL NOTES: SEE VM401 FOR VAPOR MANAGEMENT DETAILS. CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP. TERRAVENT CONNECTION TO PVC PER MANUFACTURER RECOMMENDED END OUT AND PIPE ADAPTER.
MATCHLINE - SEE VM10P	6
	$\frac{\mathbf{N}}{\mathbf{S}} \underbrace{\mathbf{G}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}} \underbrace{\mathbf{U}}$
NORTHE IS UNDERGR(EXPIRATION DATE: 08/31/2024 9/14/2023 CRN BUS DIVISION REPLACEMENT SUED FOR CONSTRUCTION OUND BUS STORAGE PLAN - AREA K
NO. SCALE 1/8" = 1'-0"	DRAWING NO. SHEET NO. T06-VM10K

U	ISSUED FO NDERGROUND BU	R CONSTRUCTION S STORAGE PLAN - AR	EAL
IO.	SCALE 1/8" = 1'-0"	drawing no. T06-VM10L	SHEET NO.

\bigcirc		B	E	J	Ν	S	
		Α	D	Н	М	R	
	K	EY P	LAN				
	* 0/5	PICT OF POCUSigne	COLUMBIT	* PRO DOCI I AM LAWS	FESSIONA JMENTS W A DULY LIC S OF THE D	l certifi Ere pre Ensed p Istrict (ICATION: I HEREB EPARED OR APPRO ROFESSIONAL EN OF COLUMBIA."
	P	66D7CEED	72DA446	Ŝ∕ LICEN	NSE No.		PE921787
	0	ESSION	VSED GINY	EXPI	RATION DA	TE:	08/31/2024

9/14/2023

ATION: I HEREBY CERTIFY THAT THESE ARED OR APPROVED BY ME, AND THAT OFESSIONAL ENGINEER UNDER THE COLUMBIA."

GENERAL NOTES:

- SEE VM401 FOR VAPOR MANAGEMENT DETAILS.
- CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP. TERRAVENT CONNECTION TO PVC PER MANUFACTURER 3.
- RECOMMENDED END OUT AND PIPE ADAPTER.

DN	M metro W	ASHINGTON METROPOLITA	N AREA TRANSIT AUTHORI	TY
		OFFICE OF CAPITAL PRO	GRAM DELIVERY	
	APPROVED	AI DATE	PPROVED DATE	CONTRACT NO FQ19144N

	GENERAL 1. SEE 2. CAP INST 3. TERI REC	NOTES: VM401 FOR VAPOR MANA 6-INCH PVC TWO FEET AE ALL 1/4-INCH SAMPLING P RAVENT CONNECTION TO OMMENDED END OUT ANI	AGEMENT DETAILS. BOVE CONCRETE SLAB AND PORT VALVE IN CAP. PVC PER MANUFACTURER D PIPE ADAPTER.
	———	GLQ	U
R	C B A KEY PL STRICT OF STRICT OF STR	F K P E J N D H M D H M AN PROFESSIONAL C DOCUMENTS WER IAM A DULY LICEN Image: State of the dist LICENSE No. SELUCION EXPIRATION DATE	T
NO UNDE NO. SCALE 1/8"	RTHERN BUS D ISSUED FOF RGROUND BUS	DRAWING NO. TO6-VM10M	CEMENT DN N - AREA M

ION	M metro W	ASHINGTON METROPC	DLITAN AREA TRAN	ISIT AUTHORITY	
UCTION		OFFICE OF CAPITA	L PROGRAM DELIVER	Y	1
	APPROVED	DATE	APPROVED	DATE	CONTRACT FQ19144N

ION	M metro	WASHINGTON METROPOL	ITAN AREA TRANSIT A	JTHORITY	
	-	OFFICE OF CAPITAL F	PROGRAM DELIVERY		1
	 APPROVED		APPROVED		CONTRAC
		DATE		DATE	FQ19144

ON	M metro	WASHINGTON METROPOLITAN	AREA TRANSIT AUTHORITY	
		OFFICE OF CAPITAL PROG	GRAM DELIVERY	
	APPROVED	DATE APP	PROVED	CONTRACT FQ19144

 GENERAL NOTES: 1. SEE VM401 FOR VAPOR MANAGEMENT DETAILS. 2. CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP. 3. TERRAVENT CONNECTION TO PVC PER MANUFACTURER RECOMMENDED END OUT AND PIPE ADAPTER.
8
N + G + Q + U + G + C + F + K + P + T + B + E + J + N + S + A + D + H + M + R + H + H + H + H + H + H + H + H + H
"PROFESSIONAL CERTIFICATION: I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE DISTRICT OF COLUMBIA." LICENSE No
NORTHERN BUS DIVISION REPLACEMENT ISSUED FOR CONSTRUCTION UNDERGROUND BUS STORAGE PLAN - AREA Q
NO. SCALE DRAWING NO. SHEET NO. $1/8" = 1'-0"$ DRAWING NO. TO6-VM10Q

ON	M metro	WASHINGTON METROPOLITAN AREA TRANS	SIT AUTHORITY	
		OFFICE OF CAPITAL PROGRAM DELIVERY]
		APPROVED DATE	DATE	CONTRACT

GENERAL NOTES:

- SEE VM401 FOR VAPOR MANAGEMENT DETAILS.
- 2. CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP.
- 3. TERRAVENT CONNECTION TO PVC PER MANUFACTURER RECOMMENDED END OUT AND PIPE ADAPTER.

—	•	N G C F B E A D	L K J H	P N M	U T S R			
		KEY PLAN						
		PICT OF COLUMN STRICT OF COLUMN Bocusigned by: Bocusigned by: Bocu	* * * UICENS EXPIRA	ESSIONA MENTS W DULY LIC OF THE D GE No ATION DA	L CERTIFIC (ERE PREI ENSED PF DISTRICT C	CATION: I PARED OI ROFESSIC DF COLUM PE921 08/31/	I HEREBY CERTII R APPROVED BY DNAL ENGINEER IBIA." 1787 /2024	FY THAT THESE / ME, AND THAT UNDER THE
	NORTHERI ISSU UNDERGROU	N BUS DIVIS JED FOR CC IND BUS ST	ION R NSTR ORAGI	EPL/ UCT E PL	ACEN ION AN -	⁄IEN ⁻ ARE	T A S	
NO. I	SCALE 1/8" = 1'-0"	DRAWING T06-VI	ο ΝΟ. Μ10S			S	SHEET NO.	

4

5

- INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP. 3. TERRAVENT CONNECTION TO PVC PER MANUFACTURER RECOMMENDED END OUT AND PIPE ADAPTER.
- SEE VM401 FOR VAPOR MANAGEMENT DETAILS.
 CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND
- GENERAL NOTES:

	\frown							
	-(5)	C F	К	Р	Т			
		BE	J	N	S			
	• —	A D	Н	М	R			
		KEY PLAN						
		STRICT OF COLUMN STRICT OF COLUMN BOCUSIGNED BY: BOCUSIGNED BY: BO	The second secon	DFESSIONA UMENTS W A DULY LIC S OF THE D NSE No RATION DA	L CERTIFIC (ERE PRE ENSED PF DISTRICT C	CATION: I HEREBY CERTIFY THAT THESE PARED OR APPROVED BY ME, AND THAT ROFESSIONAL ENGINEER UNDER THE DF COLUMBIA." PE921787 08/31/2024		
NORTHERN BUS DIVISION REPLACEMENT ISSUED FOR CONSTRUCTION UNDERGROUND BUS STORAGE PLAN - AREA T								
NO. N	SCALE 1/8" = 1'-0"	DRAWIN T06-V	NG NO. 1010/101			SHEET NO.		

GLQU

6

- SEE VM401 FOR VAPOR MANAGEMENT DETAILS. INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP. 3. TERRAVENT CONNECTION TO PVC PER MANUFACTURER
- 2. CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND

- GENERAL NOTES:

RECOMMENDED END OUT AND PIPE ADAPTER.

M metro	WASHINGTON METROPOLITAN AREA TRAN	NSIT AUTHORITY	
	OFFICE OF CAPITAL PROGRAM DELIVER	RΥ.	
APPROVED	APPROVED		CONTRAC
	DATE	DATE	FQ1914

		5/ 14/ 2025					
1U	NORTHERN BUS DIVISION REPLACEMENT ISSUED FOR CONSTRUCTION UNDERGROUND BUS STORAGE PLAN - AREA U						
γ no. I n	SCALE 1/8" = 1'-0"	drawing no. T06-VM10U		SHEET NO.			

KEY PLAN		
TRICT OF COLUME STRICT OF COLUME WIRA MESSINE BocuSigned by: * 44 No. PF021707 57 *	"PROFESSIONAL CERTIFICATION: DOCUMENTS WERE PREPARED C I AM A DULY LICENSED PROFESSIO LAWS OF THE DISTRICT OF COLUM	I HEREBY CERTIFY THAT THESE OR APPROVED BY ME, AND THAT ONAL ENGINEER UNDER THE MBIA."
66D7CEED72DA446	LICENSE No. PE92	1787
rss/onal ENGINE	EXPIRATION DATE: 08/31	/2024
9/14/2023		

N						_
		G	L	Q	U	
	С	F	К	Р	Т	
	В	E	J	N	S	
	Α	D	Н	М	R	

8

GENERAL NOTES: 1. SEE VM401 FOR VAPOR MANAGEMENT DETAILS. 2. CAP 6-INCH PVC TWO FEET ABOVE CONCRETE SLAB AND

- INSTALL 1/4-INCH SAMPLING PORT VALVE IN CAP.

- 3. TERRAVENT CONNECTION TO PVC PER MANUFACTURER RECOMMENDED END OUT AND PIPE ADAPTER.

VAPOR MANAGEMENT SYSTEM DETAILS							
NO.	SCALE	DRAWING NO.	SHEET NO.				
	AS INDICATED	T06 - VM-401	M1323-				

NORTHERN BUS DIVISION REPLACEMENT

ISSUED FOR CONSTRUCTION

+/- 12" TO 15" HAUNCH

SPREAD FOOTING OR PILE CAP, SEE STRUCT DWGS FOR REINF.

"PROFESSIONAL CERTIFICATION: I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE DISTRICT OF COLUMBIA."

PE921787

08/31/2024

STV 100

GRAVEL BED - 6" SCH. 40 PVC PIPE

F.F. EL 171.00'

				REFERENCE DRAWINGS			REVISIONS
MA	DESIGNED	05/28/2021 DATE	NUMBER S413	TITLE UNDERSLAB DRAINAGE PLAN	DATE 06/26/2023	NUM 0	DESCRIPT ISSUED FOR CONSTR
:23:04	DRAWN	05/28/2021 					
2023 5:	CHECKED	05/28/2021 DATE					
1/2/21							
l			-				

VAPOR BARRIER DETAILS

TION	M metro	WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY	
	-	OFFICE OF CAPITAL PROGRAM DELIVERY ENGA - CIVIL ENGINEERING	
	APPROVED	DATE APPROVED DATE	CONTRAC ⁻ FQ19144

"PROFESSIONAL CERTIFICATION: I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE

08/31/2024

NORTHERN BUS DIVISION REPLACEMENT DESIGN PACKAGE 1 (DP1) ISSUED FOR PERMIT VAPOR MANAGEMENT SYSTEM DETAILS 2

IO.	SCALE	DRAWING NO.	SHEET NO.
	AS INDICATED	T06 - VM-402	M1323-

WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY

SPECIFICATIONS MANUAL

NORTHERN BUS DIVISION REPLACEMENT

4615 14th Street NW, Washington DC

Project No.: FQ19144N

Vapor Mitigation Specs - Issued for Construction

December 21, 2023

OFFICE OF CAPITAL PROGRAM DELIVERY

ISSUED FOR CONSTRUCTION

THIS PAGE NOT USED

CONTRACT SPECIFICATIONS

SEAL PAGE

The Professional seal and signature fixed hereon indicates the professionals' review and participation in the preparation of the Contract Specifications.

Sections:

31 21 11

LEGEND

Rev: Revision Number (To be used after Issued for Construction)

X: Issued as part of indicated package

Prep (Preparing Discipline) AR – Architectural BEB – Battery Electric Bus CI – Civil CxA – Commissioning Agent DF – Demolition & Foundations EL – Electrical FP – Fire Protection GH – Geotechnical / HAZMAT **GR – From WMATA RFP** HP - Historic Preservation IN – Industrial Equipment & Piping ME – Mechanical PL – Plumbing PV – Photovoltaic SI – Supplemental Information ST – Structural

STT – Structural Temporary

		DEMO 100%	DP1	DP2	BEB	Prep
GENERAL INFORM	ΛΑΤΙΟΝ					
00 01 05	Certifications Page					AR
00 01 10	Table of Contents	Х	Х	Х		AR

		DEMO 100%	DP1	DP2 VOL. 01	BEB	Prep
DIVISION 01 -	GENERAL REQUIREMENTS					
01 11 00	SUMMARY OF WORK					GR
01 11 10	DESIGN-BUILDER KEY STAFF					GR
01 11 20	DESIGN AND PROGRAM REQUIREMENTS					GR
01 11 30	SYSTEMS INTEGRATION					GR
01 11 40	SAFETY/ENVIRONMENTAL REQUIREMENTS					GR
01 11 50	SAFETY AND ENVIRONMENTAL CERTIFICATION					GR
01 11 60	IDENTIFICATION AND SECURITY					GR
01 14 10	ACCESS TO SITE					GR
01 18 00	PROJECT UTILITY INTERFACE					GR
01 25 00	CONTRACT MODIFICATION PROCEDURES					GR
01 31 20	PROJECT MEETINGS					GR
01 32 10	CONSTRUCTION PHOTOGRAPHS					GR

		DEMO 100%	DP1	DP2 VOL. 01	BEB	Prep
01 32 20	CONTRACT PROGRESS REPORTING					GR
01 33 00	SUBMITTAL PROCEDURES					GR
01 35 91	HISTORIC TREATMENT PROCEDURES	х				НР
01 41 00	REGULATORY REQUIREMENTS					GR
01 42 00	REFERENCES					GR
01 47 00	QUALITY MANAGEMENT SYSTEM					GR
01 51 00	TEMPORARY UTILITIES					GR
01 52 00	TEMPORARY CONSTRUCTION FACILITIES					GR
01 53 00	TEMPORARY DECKING					GR
01 55 00	MAINTENANCE OF TRAFFIC, ACCESS, AND PARKING					GR
01 56 00	TEMPORARY BARRIERS AND ENCLOSURES					GR
01 57 00	TEMPORARY CONTROLS					GR
01 58 00	PROJECT SIGNS					GR
01 61 00	BASIC PRODUCT REQUIREMENTS					GR
01 63 00	PRODUCT SUBSTITUTION PROCEDURES					GR
01 71 10	ACCEPTANCE OF CONDITIONS					GR
01 72 10	LAYOUT OF WORK AND FIELD ENGINEERING					GR
01 72 20	MOBILIZATION					GR
01 72 30	PROTECTION OF ADJACENT CONSTRUCTION					GR
01 73 10	CUTTING AND PATCHING					GR
01 74 00	CLEANING					GR
01 74 19	DEMOLITION WASTE MANAGEMENT AND DISPOSAL	х				AR
01 74 21	CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL		Х			AR
01 77 50	CLOSEOUT			х		GR
01 81 13	SUSTAINABLE DESIGN REQUIREMENTS	х				AR
01 82 00	DEMONSTRATION AND TRAINING					GR
01 91 13	GENERAL COMMISSIONING REQUIREMENTS (TBD)					СхА
01 91 15	COMMISSIONING OF BUILDING ENCLOSURE REQUIREMENTS (TBD)					CxA
DIVISION 02 -	EXISTING CONDITIONS					
02 41 00	DEMOLITION	x				DF
02 43 17	REMOVAL AND SALVAGE OF EXISTING FACILITIES	X				HP
02 65 00		X				GH
02 82 13.41		X				GH
02 83 33.13	LEAD DASED PAINT AND UNIVERSAL WASTE REIVIOVAL					GH

		DEMO 100%	DP1	DP2 VOL. 01	BEB	Prep
DIVISION 03	- CONCRETE	-			1	
03 10 00	CONCRETE FORMING AND ACCESSORIES	X				ST
03 20 00	CONCRETE REINFORCING	X				ST
03 30 00.01	CAST-IN-PLACE CONCRETE – TEMPORARY	Х				STT
03 30 00.02	CAST-IN-PLACE CONCRETE – PERMANENT	Х				ST
03 37 13	SHOTCRETE	Х				DF
03 42 13	PRECAST CONCRETE PRODUCTS FOR BELOW GRADE CONSTRUCTION		х			DF
03 45 00	PRECAST ARCHITECTURAL CONCRETE			Х		AR
03 62 13	NON-METALLIC NON-SHRINK GROUTING		x			STV
	- MASONRY					
04 03 22	HISTORIC BRICK UNIT MASONRY REPAIR, REPOINTING, AND CLEANING			x		НР
04 03 42	HISTORIC STONE MASONRY REPAIR, REPOINTING, AND CLEANING			X		НР
04 05 13	MORTAR, GROUT, AND MASONRY ACCESSORIES		Х			AR
04 20 00	UNIT MASONRY			х		AR
DIVISION 05	- METALS					
05 12 00.01	STRUCTURAL STEEL FRAMING - TEMPORARY	X				ST
05 12 00.02	STRUCTURAL STEEL FRAMING - PERMANENT		Х			ST
05 31 00	METAL DECKING		X			ST
05 40 00	COLD-FORMED METAL FRAMING			Х		AR
05 50 00	MISCELLANEOUS METALS		Х			AR
05 51 00	METAL STAIRS		X			AR
05 52 13	PIPE AND TUBE RAILINGS		Х			AR
05 53 13	BAR GRATINGS		Х			ST
05 73 00	DECORATIVE METAL RAILINGS			х		AR
DIVISION 06	- WOOD PLASTICS AND COMPOSITES		1			
06 10 00	ROUGH CARPENTRY			X		AR
06 16 00	SHEATHING			X		AR
06 40 23	INTERIOR ARCHITECTURAL WOODWORK			X		AR
DIVISION 07	- THERMAL AND MOISTURE PROTECTION					<u> </u>
07 13 00			Y			ΔΡ
07 18 00			^	Y Y		
07 10 00				^		

		DEMO 100%	DP1	DP2 VOL. 01	BEB	Prep
07 24 00	BUILDING INSULATION		Х			AR
07 27 26	FLUID-APPLIED MEMBRANE AIR BARRIERS			Х		AR
07 31 26	SLATE ROOF			Х		НР
07 42 10.11	COMPOSITE FRAMING SUPPORT SYSTEM			Х		AR
07 42 47	ULTRA-HIGH-PERFORMANCE CONCRETE (UPHC) PANEL SYSTEM			Х		AR
07 42 93	SOFFIT PANELS			Х		AR
07 54 19	POLYVINYL-CHLORIDE (PVC) ROOFING			Х		AR
07 55 56	FLUID-APPLIED PROTECTED MEMBRANE ROOFING			Х		AR
07 60 00	FLASHING AND SHEET METAL		Х			AR
07 61 00	SHEET METAL ROOFING			Х		НР
07 72 00	ROOF ACCESSORIES			Х		AR
07 72 73	VEGETATED ROOF SYSTEMS			Х		AR
07 76 00	CONCRETE PAVERS			X		AR
07 81 15	SPRAYED FIREPROOFING			Х		AR
07 81 23	INTUMESCENT FIREPROOFING			Х		AR
07 84 00	FIRESTOPPING			Х		AR
07 84 43	JOINT FIRESTOPPING			Х		AR
07 92 00	JOINT SEALANTS		Х			AR
07 92 19	ACOUSTICAL JOINT SEALANTS			Х		AR
07 95 13	EXPANSION JOINT COVER ASSEMBLIES			Х		AR
DIVISION 08 -	OPENINGS					
08 03 52	HISTORIC TREATMENT OF WOOD WINDOWS			X		HP
08 11 13	HOLLOW METAL DOORS AND FRAMES			Х		AR
08 11 19	STAINLESS-STEEL DOORS AND FRAMES			X		AR
08 11 77	BULLET-RESISTANT STEEL DOORS			X		AR
08 31 13	ACCESS DOORS AND FRAMES			X		AR
08 33 13	COILING COUNTER DOORS			X		AR
08 33 23	OVERHEAD COILING DOORS			X		AR
08 33 23.13	HIGH PERFORMANCE OVERHEAD HIGH SPEED DOORS			Х		AR
08 33 26	OVERHEAD COILING GRILLES			X		AR
08 33 33	FIRE SHUTTERS			X		AR
08 36 13	SECTIONAL DOORS			X		AR
08 41 13	ALUMINUM ENTRANCES AND STOREFRONTS			Х		AR
08 44 13	GLAZED ALUMINUM CURTAIN WALL			Х		AR
08 44 23	FIRE RATED CURTAIN WALL			Х		AR

		DEMO 100%	DP1	DP2 VOL. 01	BEB	Prep
08 51 13	ALUMINUM WINDOWS			Х		AR
08 52 00	ALUMINUM CLAD WOOD WINDOWS			Х		HP
08 56 53	SECURITY WINDOWS			Х		AR
08 71 11	DOOR HARDWARE			Х		AR
08 80 00	GLASS AND GLAZING			Х		AR
08 80 00.13	INSULATED WINDOW PANELS			Х		AR
08 91 00	METAL LOUVERS			Х		AR
DIVISION 09 -	FINISHES					
09 21 16	DRYWALL SYSTEMS			X		AR
09 24 00	PORTLAND CEMENT PLASTERING STUCCO			Х		HP
09 30 00	CERAMIC TILE			X		AR
09 51 13	ACOUSTICAL PANEL CEILINGS			X		AR
09 65 00	RESILIENT FLOORING AND ACCESSORIES			X		AR
09 66 23	RESINOUS MATRIX TERRAZZO FLOORING			X		AR
09 68 13	TILE CARPETING			X		AR
09 72 00	WALL COVERINGS			X		AR
09 84 53	PARTITION CLOSURE			X		AR
09 91 23	INTERIOR PAINTING			X		AR
09 96 00	HIGH-PERFORMANCE COATINGS		Х			AR
DIVISION 10 -	SPECIALTIES					
10 11 00	VISUAL DISPLAY UNITS			Х		AR
10 14 00	SIGNAGE			X		AR
10 21 13.19	PLASTIC TOILET COMPARTMENTS			Х		AR
10 22 13	WIRE MESH PARTITIONS			x		AR
10 22 39	FOLDING PANEL PARTITIONS			Х		AR
10 26 00	WALL PROTECTION			Х		AR
10 26 41	BULLET RESISTANT PANELS			Х		AR
10 28 13	TOILET ACCESSORIES			Х		AR
10 30 00	DOORWAY SPILL BARRIER		Х			AR
10 44 13	FIRE PROTECTION CABINETS			X		AR
10 44 16	FIRE EXTINGUISHERS			X		AR
10 51 13	METAL LOCKERS			Х		AR
10 56 00	STORAGE ASSEMBLIES			Х		IN
10 75 16	GROUND-SET FLAGPOLES		Х			AR

	I	DEMO 100%	DP1	DP2 VOL. 01	BEB	Prep
DIVISION 11 -	EQUIPMENT					
11 05 00	COMMON WORK RESULTS FOR EQUIPMENT		Х		х	IN
11 11 10	SERVICE STATION EQUIPMENT		Х			IN
11 11 19	LUBRICATION EQUIPMENT			Х		IN
11 11 20	AIR COMPRESSOR AND APPURTENANCES			Х		IN
11 11 26	VEHICLE WASH EQUIPMENT		х			IN
11 11 36	BATTERY ELECTRIC BUS CHARGER				Х	EL
11 12 00	PARKING CONTROL EQUIPMENT			x		AR
11 16 00	VAULT EQUIPMENT			Х		IN
11 19 16	CLEARING TRAP			X		AR
11 19 23	GUN SAFE			Х		AR
11 19 25	WALL MOUNTED FIREARMS BOX			x		AR
11 30 13	RESIDENTIAL APPLIANCES			Х		AR
11 52 13	PROJECTION SCREENS			Х		AR
11 96 00	GENERAL SHOP EQUIPMENT			Х	х	IN
11 96 10	MISCELLANEOUS EQUIPMENT			Х		IN

		DEMO 100%	DP1	DP2 VOL. 02	BEB	Prep
DIVISION 12 -	FURNISHINGS					
12 24 13	ROLLER WINDOW SHADES			Х		AR
12 48 13	ENTRANCE FLOOR MATS AND FRAMES		Х			AR
12 50 00	FURNITURE			Х		AR
12 93 13	BICYCLE RACKS AND ACCESSORIES			Х		AR
DIVISION 13 -	SPECIAL CONSTRUCTION					
13 34 23	PRE-FABRICATED HAZARDOUS MATERIALS STORAGE SYSTEMS			Х		IN
13 60 00	FABRICATED EQUIPMENT			Х		IN
DIVISION 14 -	CONVEYING EQUIPMENT					
14 21 20	GEARED TRACTION PASSENGER ELEVATORS		Х			AR
14 24 10	IN-GROUND HYDRAULIC ELEVATORS		Х			AR
14 45 00	VEHICLE LIFTS		Х			IN
14 80 00	SCAFFOLDING				Х	IN
14 83 00	ELEVATING PLATFORMS			Х	Х	IN

		DEMO 100%	DP1	DP2 VOL. 02	BEB	Prep
DIVISION 15	to 20 - NOT USED	-				
DIVISION 21	FIRE SUPPRESSION					
21 05 13	COMMON MOTOR REQUIREMENTS FOR FIRE SUPPRESSION EQUIPMENT			х		FP
21 05 18	ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING			Х		FP
21 05 23	GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING			Х		FP
21 05 29	HANGERS AND SUPPORTS FOR FIRE SUPPRESSION PIPING AND EQUIPMENT		х			FP
21 05 48	VIBRATION CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT			х		FP
21 05 53	IDENTIFICATION OF FIRE-SUPPRESSION PIPING AND EQUIPMENT			Х		FP
21 11 19	FIRE DEPARTMENT CONNECTIONS			Х		FP
21 12 05	FIRE PROTECTION AND SUPPRESSION			Х		FP
21 31 13	ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS			Х		FP
DIVISION 22	- PLUMBING		1	1		1
22 05 13	COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT			Х		PL
22 05 17	SLEEVES AND SLEEVE SEALS FOR PIPING		Х			PL
22 05 19	METERS AND GAGES FOR DOMESTIC PLUMBING			X		PL
22 05 33	HEAT TRACING FOR PLUMBING PIPING			х		PL
22 05 48	VIBRATION ISOLATION			Х		PL
22 05 53	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT			Х		PL
22 07 00	PLUMBING INSULATION			Х		PL
22 08 00	COMMISSIONING OF PLUMBING (TBD)					CxA
22 10 00	PIPING SYSTEMS		Х			PL
22 11 23	FACILITY NATURAL-GAS PIPING			Х		ME
22 11 35	MISCELLANEOUS PLUMBING PUMPS			Х		PL
22 12 23	FACILITY INDOOR POTABLE WATER STORAGE TANKS			x		PL
22 14 13	FACILITY STORM DRAINAGE PIPING		Х			PL
22 14 23	STORM DRAINAGE PIPING SPECIALTIES		х			PL
22 25 13	COALESCING OIL/WATER SEPARATOR			Х		PL
22 33 00	DOMESTIC WATER HEATERS			Х		PL
22 42 10	PLUMBING FIXTURES			Х		PL
22 70 13	FLUID SYSTEM PIPING		х			IPL

		DEMO 100%	DP1	DP2 VOL. 02	BEB	Prep
23 05 13	COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT			Х		ME
23 05 16	EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING			Х		ME
23 05 18	ESCUTCHEONS FOR HVAC PIPING			Х		ME
23 05 19	METERS AND GAGES FOR HVAC PIPING			Х		ME
23 05 23	GENERAL VALVES FOR HVAC PIPING			Х		ME
23 05 29	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT			Х		ME
23 05 48	VIBRATION CONTROLS FOR HVAC			X		ME
23 05 53	IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT			Х		ME
23 05 93	SYSTEM BALANCING AND TESTING			X		ME
23 07 00	HVAC INSULATION			Х		ME
23 08 00	COMMISSIONING OF HVAC (TBD)					СхА
23 09 00	CONTROL EQUIPMENT			Х		ME
23 09 15.01	CONTROL DOCUMENTATION			X		ME
23 09 23	ULTRASONIC FLOWMETERS			Х		ME
23 09 28	GAS INSTRUMENTS			Х		ME
23 21 13	HYDRONIC PIPING			Х		ME
23 21 16	HYDRONIC PIPING SPECIALTIES			X		ME
23 21 23	CHILLED WATER PUMPS			Х		ME
23 21 24	HYDRONIC PUMPS			X		ME
23 23 00	REFRIGERANT PIPING			Х		ME
23 25 00	WATER TREATMENT SYSTEM			X		ME
23 31 00	DUCTWORK			Х		ME
23 34 00	FANS			Х		ME
23 34 33	AIR CURTAINS			Х		ME
23 36 00	AIR TERMINAL UNITS			Х		ME
23 37 00	OUTLETS AND GRILLES			Х		ME
23 37 23	HVAC GRAVITY VENTILATORS			х		ME
23 41 00	FILTERS			X		ME
23 52 16	CONDENSING BOILERS			Х		ME
23 60 00	CHILLER PLANT			x		ME
23 64 00	CHILLERS			Х		ME
23 73 13	VENTILATING UNITS			Х		ME
23 73 14	INDOOR SEMI-CUSTOM, BASIC AIR-HANDLING UNITS			Х		ME
23 74 16	PACKAGED, ROOFTOP AIR-CONDITIONING UNITS (FOR RETAIL)			x		ME
23 81 23	COMPUTER-ROOM AIR-CONDITIONERS			Х		ME
23 81 26	SPLIT-SYSTEM AIR-CONDITIONERS			x		ME

		DEMO 100%	DP1	DP2 VOL. 02	BEB	Prep
23 82 00	HEATING EQUIPMENT			Х		ME
23 82 39	CABINET UNIT HEATERS			Х		ME
23 82 40	PROPELLER UNIT HEATERS			Х		ME

		DEMO 100%	DP1	DP2 VOL. 03	BEB	Prep
DIVISION 24 to 25 - NOT USED						
DIVISION 26 -	ELECTRICAL					
26 00 00	ELECTRIC WORK FOR BUS FACILITY		х			EL
26 01 00	OPERATION AND MAINTENANCE TRAINING FOR AC ROOMS			Х		EL
26 02 00	BASIC ELECTRICAL MATERIALS AND METHODS		Х			EL
26 05 10	INTERFACE CRITERIA AND RESPONSIBILITIES			Х		EL
26 05 13	MEDIUM VOLTAGE CABLE			Х		EL
26 05 19	WIRE, CABLE AND BUSWAYS (LOW VOLTAGE)		Х		х	EL
26 05 26	GROUNDING AND BONDING		Х			EL
26 05 29	WIRE CONNECTION ACCESSORIES			Х		EL
26 05 33	RACEWAYS, BOXES AND CABINETS		Х		х	EL
26 05 43	UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS		x			EL
26 05 72	OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT STUDY			Х		EL
26 05 73	OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY			Х		EL
26 05 74	OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY			Х		EL
26 08 00	COMMISSIONING OF ELECTRICAL SYSTEMS (TBD)					СхА
26 09 23	WIRING AND CONTROL DEVICES			Х		EL
26 11 13	UNIT SUBSTATION			Х		EL
26 12 10	TRANSFORMERS			Х		EL
26 13 00	HIGH-VOLTAGE AC SWITCHGEAR			Х		EL
26 23 00	LOW-VOLTAGE SWITCHGEAR AND SWITCHBOARD			Х		EL
26 24 14	PROGRAMMABLE LOGIC CONTROLLER (PLC) AND HUMAN MACHINE INTERFACE (HMI) FOR AC SWITCHGEAR SYSTEMS			х		EL
26 24 19	MOTOR STARTERS			Х		EL
26 24 21	CIRCUIT BREAKERS, PANELBOARDS AND LOAD CENTERS			Х		EL
26 27 13	ELECTRICITY METERING			Х		EL
26 28 16	ENCLOSED SWITCHES AND CIRCUIT BREAKERS			Х		EL
26 31 00	PHOTOVOLTAIC (PV) SYSTEM – ROOF MOUNTED			х		EL
26 31 02	EV CHARGING SYSTEM			х		EL
26 32 13	EMERGENCY STANDBY GENERATOR SYSTEM			Х		EL

		DEMO 100%	DP1	DP2 VOL. 03	BEB	Prep
26 33 13.1	BATTERIES LEAD ACID-SELENIUM			Х		EL
26 33 53	UNINTERRUPTIBLE POWER SYSTEM			Х		EL
26 42 00	CORROSION CONTROL	Х				STV
26 42 19	CORROSION CONTROL SYSTEM TESTING	Х				STV
26 51 19	LED INTERIOR LIGHTING			Х		EL
26 51 20	LIGHTING CONTROL SYSTEMS			Х		EL
26 52 19	EMERGENCY AND EXIT LIGHTING			Х		EL
26 56 13	LIGHTING POLES AND STANDARDS			Х		EL
26 56 19	LED EXTERIOR LIGHTING			Х		EL
26 56 19.01	LED HISTORIC DISPLAY LIGHTING			Х		EL
26 60 00	LIGHTNING PROTECTION			Х		EL
DIVISION 27 -	COMMUNICATIONS					
27 00 00	TELECOMMUNICATION AND DATA COMMUNICATIONS OVERVIEW			Х		EL
27 00 10	COMMUNICATIONS STANDARD SPECIFICATIONS - ENGINEERING SERVICES			x		EL
27 00 20	COMMUNICATIONS STANDARD SPECIFICATIONS - INSTALLATION		Х			EL
27 00 30	COMMUNICATIONS STANDARD SPECIFICATIONS - EQUIPMENT AND MATERIALS			x		EL
27 00 40	COMMUNICATIONS SYSTEM SUBMITTALS AND SERVICES			Х		EL
27 00 60	COMMUNICATIONS - TELEPHONE AND DATA SYSTEM			Х		EL
27 00 70	COMMUNICATIONS SYSTEMS QUALITY ASSURANCE & TESTING			Х		EL
27 02 40	COMMUNICATIONS-METRO AREA RADIO SYSTEM			Х		EL
27 05 43	UNDERGROUND ELECTRICAL AND COMMUNICATIONS DISTRIBUTION SYSTEMS		х			EL
27 10 10	COMMUNICATIONS GROUNDING		X			EL
27 10 20	COMMUNICATIONS ELECTRICAL POWER DISTRIBUTION		Х			EL
27 26 28	INTERCOM SYSTEM			Х		EL
27 32 26	AORA RING-DOWN EMERGENCY PHONE			Х		EL
27 51 16.02	COMMUNICATIONS – IP PUBLIC ADDRESS SYSTEM			Х		EL
DIVISION 28 -	ELECTRONIC SAFETY AND SECURITY					
28 13 00	ELECTRONIC ACCESS CONTROL SYSTEMS			Х		EL
28 23 11	COMMUNICATIONS - CLOSED-CIRCUIT TELEVISION SYSTEM			Х		EL
28 31 00	ENVIRONMENTAL AIR SAMPLING FOR SMOKE DETECTION			Х		EL
28 31 32	COMMUNICATIONS - FIRE ALARM, DETECTION, AND NOTIFICATION			x		EL
28 40 00.01	SCADA WORK FOR AC ROOMS			Х		EL

		DEMO 100%	DP1	DP2 VOL. 03	BEB	Prep
28 40 02	REMOTE TERMINAL UNIT (RTU) FOR ELECTRICAL SCADA SYSTEMS			Х		EL
28 40 04	NETWORK SWITCH FOR SCADA AND AUTOMATION SYSTEMS			Х		EL
28 40 06.01	SCADA SYSTEMS INTEGRATION TESTING AND DOCUMENTATION FOR AC ROOMS			x		EL
28 40 07.01	HUMAN MACHINE INTERFACE FOR AC ROOM SCADA SYSTEMS			Х		EL
28 40 08	WIRE, CABLE, CABLE TRAY, AND TERMINATION PANEL FOR SCADA SYSTEMS		x			EL
DIVISION 29	to 30 - NOT USED					
DIVISION 31	- EARTHWORK					
31 09 13	GEOTECHNICAL AND STRUCTURAL INSTRUMENTATION	X				DF
31 10 10	SITE CLEARING	Х				DF
31 20 10	GRADING, EXCAVATING AND BACKFILLING	Х				CI
<u>31 21 11</u>	SOIL GAS COLLECTION SYSTEM		X			<u>IN</u>
31 23 16.26	ROCK REMOVAL		Х			GH
31 23 19	DEWATERING	X				DF
31 40 10	UNDERPINNING, SUPPORT AND RESTORATION OF STRUCTURE	Х				DF
31 50 10	SUPPORT OF EXCAVATION	Х				DF
31 63 29	DRILLED CAISSONS		Х			GH
31 63 33	MICRO PILES	Х				DF
DIVISION 32	- EXTERIOR IMPROVEMENTS					
32 00 00	GENERAL DIVISION 32 PUBLIC RIGHT-OF-WAY SPECIFICATIONS	x				CI
32 17 23	INTERIOR PAVEMENT MARKINGS			x		AR
DIVISION 33	- SITE IMPROVEMENTS					
33 00 00	GENERAL DIVISION 33 PUBLIC RIGHT OF WAY SPECIFICATIONS	x				CI
33 05 26	MARKERS		x			CI
33 46 00	SLAB SUBDRAINAGE		х			CI
DIVISION 34 to 40 - NOT USED						
DIVISION 41	- MATERIAL PROCESSING AND HANDLING EQUIPMENT	1	I			T
41 22 00	CRANES AND HOISTS			Х		IN
41 63 00	GENERAL VEHICLES			x		IN

		DEMO 100%	DP1	DP2 VOL. 03	BEB	Prep	
DIVISION 42 -	NOT USED						
DIVISION 43 -	PROCESS GAS AND LIQUID HANDLING, PURIFICATION, AN	ID STO	RAGI	E EQUIP	MEN.	г	
43 21 19	DISPENSING LIQUID PUMPS		Х			IN	
43 41 16	ABOVE GROUND ATMOSPHERIC TANKS			Х		IN	
43 41 17	BELOW GROUND ATMOSPHERIC TANKS		Х			IN	
DIVISION 44 -	DIVISION 44 - POLLUTION AND WASTE CONTROL EQUIPMENT						
44 11 16	DUST COLLECTION SYSTEMS			Х		IN	
44 11 37	FUME EXTRACTION SYSTEMS			Х		IN	
DIVISION 45 - NOT USED							
DIVISION 46 - WATER AND WASTEWATER EQUIPMENT							
46 25 16	WATER TREATMENT OIL WATER SEPARATOR		Х			ME	

--- End of Table of Contents ---

SECTION 31 21 11

SOIL GAS COLLECTION SYSTEM

PART 1 – GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including Contract Requirements and General and Supplementary Conditions from the Division 00 and 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. This Section includes the following:
 - 1. Vapor Retarder.
 - 2. Vapor Collection Materials
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Cast-in-Place Concrete: 03 30 00.02
 - 2. Facility Storm Drainage Piping: 22 14 13

1.03 PERFORMANCE REQUIREMENTS

A. General: Provide a gas venting material that collects gas vapors and directs them to discharge or to collection points as specified in the gas vapor collection system drawings and complies with the physical requirements set forth by the manufacturer.

1.04 SUBMITTALS

- A. Submit Product Data for each element of the vapor management system specified, including manufacturer's specifications.
- B. Sample Submit representative samples of the following for approval:
 - 1. Vapor Retarder
 - 2. Vapor Collection
 - 3. Pre-Molded Compressible Filler

PART 2 – PRODUCTS

2.01 MANUFACTURER

- A. Vapor Collection
 - 1. Land Science, San Clemente, CA. (949) 481-8118
 - a. TerraVent
 - 2. CETCO, Bethlehem, PA. (800) 527-9948
 - a. GEOVENT
 - 3. Approved equal
- B. Vapor Retarder
 - 1. Viaflex, Sioux Falls, SD (605) 335-0174

- a. Absolute Barrier Y30BAC
- 2. Approved Equal
- C. Pre-Molded Compressible Filler
 - 1. W.R. Meadows, Inc, Hampshire, IL (800) 342-5976

2.02 VAPOR COLLECTION MATERIALS

A. Provide a low profile, trenchless, flexible, sub slab vapor collection system with the following physical properties:

PROPERTIES	TEST METHOD	Material		
Vent Core Properties				
Compressive Strength	ASTM D-1621	9,500 psf.		
Thickness		1 inch		
Flow Rate - Hydraulic gradient - 0.1	ASTM D-4716	30 gpm/ft width		
Vent Fabric Properties				
Grab Tensile Strength	ASTM D-4632	100 lbs.		
CBR Puncture	ASTM D-6241	250 lbs.		
Flow	ASTM D-4491	140 gpm/ft2		
AOS	ASTM D-4751	70 U.S Sieve		
Permittivity	ASTM D-4491	2.0 sec-1		
U.V Resistance	ASTM D-4355	70% @500 hrs.		

Include manufacturer's recommended pipe outlets and adhesive or pressure sensitive tape.

B. Vapor Retarder – High performance geomembrane gas barrier; not less than 30 mils (one thousandth of an inch) thick. Include manufacturer's recommended adhesive or pressure sensitive tape. The vapor retarder must be petroleum and solvent resistant.

2.03 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC sch 40 Pipe: ASTM D 2665; drain, waste, and vent.
- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
- D. Solvent Cement: ASTM D 2564.

2.04 VALVES

A. Petcock Valve (for Sampling):

Washington Metropolitan Area Transit Authority Northern Bus Division Replacement

- 1. Body Material: PVC.
- 2. Body Style: Inline.
- 3. Valve Structure: One Piece.
- 4. Pipe Size: ¹/₄ inch.
- 5. Connection Type: MNPT x Barb.
- 6. Port: Full.
- 7. Maximum Pressure: 150 psi CWP.
- 8. Temperature Range: 30 to 120 degrees Fahrenheit.
- 9. Ball Material: PVC.
- 10. Seat Material: PTFE.
- 11. Stem: One Piece Stem.
- 12. Handle Type: Tee.
- 13. Handle Material: ABS.
- 14. Stem Material: PVC.
- 15. Body Seal Material: EPDM.
- 16. Standards: NSF-61.
- 17. Features: Precise Finger Tip Control.

2.05 Pre-molded Compressible Filler

- A. Provide a lightweight, non-staining, polypropylene, closed-cell expansion joint filler meeting the following specifications/standards:
 - 1. ASTM D8139-17 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
 - 2. ASTM D1751 Extrusion, Compression Recovery, Water Absorption

PART 3 – EXECUTION

3.01 INSTALLATION

A. Examine substrates, areas, and conditions under which gas vent system will be installed, with installer present, for compliance with requirements. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.02 STRIP VAPOR COLLECTION INSTALLATION

- A. Install TerraVent over substrate material where designated on drawings with the flat base of the core placed up. Shall be overlapped in accordance with manufacturer's recommendations.
- B. At areas where TerraVent strips intersect cut and fold back fabric to expose the dimpled core. Arrange the strips so that the top strip interconnects into the bottom strip. Unfold fabric to cover the core and use reinforcing tape, as approved by the manufacturer, to seal the connection to prevent sand or gravel from entering the core.

- C. When connecting TerraVent to PVC pipe, attach a TerraVent End Outlet at both ends of the PVC pipe before connecting the TerraVent to the pipe reducer. Seal the TerraVent to the TerraVent End Outlet using fabric reinforcement tape.
- D. Place vent risers per specifying engineer's project specifications. Connect TerraVent to TerraVent End Outlet and seal with fabric reinforced tape. Use TerraVent End Outlet with the specified diameter piping as shown on system drawings.

3.03 SHEET VAPOR RETARDER INSTALLATION

- A. Unroll vapor barrier with the longest dimensions parallel with the direction of the concrete placement and face laps away from the expected direction of the placement where feasible.
- B. Extend vapor barrier to the perimeter of the slab. If practicable, terminate it at the top of the slab, otherwise (a) at a point acceptable to the structural engineer or (b) where obstructed by impediments, such as dowels, waterstops, or any other site condition requiring early termination of the vapor barrier. At the point of termination, seal vapor barrier to the foundation wall, grade beam or slab itself.
- C. Overlap joint six inches and seal with manufacture's recommended seam tape.
- D. Seal all penetrations per manufacturer's instructions.
- E. Repair damaged areas per the following:
 - 1. Less than one inch use manufacturer's recommended seam tape.
 - 2. Larger than one inch patch area with same geomembrane with patch extending six inches from nearest damage and seal with manufacturer's recommended seam tape.
 - Slit or tears circle cut end of each slit or tear and patch area with same geomembrane. The patch shall extend six inches from nearest damage and seal with manufacturer's recommended seam tape

3.04 PLACEMENT OF OVERLYING AND ADJACENT MATERIALS

- A. All overlying and adjacent material shall be placed or installed using approved procedures and guidelines to prevent damage to the strip vapor collection system and vapor barrier.
- B. Equipment shall not be directly driven over and stakes or any other materials may not be driven through the strip vapor collection system.
- C. Any penetrations through the vapor barrier shall be detailed per manufacturer's recommended details prior to being covered by subsequent pours.

END OF SECTION

Well Construction Details

MONITORING WELL SCHEMATIC (Flush Mount) Outer Casing Extended to Bedrock

District of Columbia Regulatory Review Division

Check one: Application 🛛 Change-In-Use 🗌

as-Built

1	Watertight cap?	\boxtimes				
2	Curb box and concrete pad					
2.1	Concrete pad area (square feet)	4 (2'x2')				
3	Borehole diameter (D1) (inches)	10.5				
4	4 Outer casing (use if area is contaminated)					
4.1	Temporary or permanent?	N/A				
4.2	Material	N/A				
4.3	Diameter (D2) (inches)					
4.4	Length (L1) (feet)					
4.5	Depth to top of weathered rock (feet)					
4.6	Depth to top of competent bedrock (feet)	30				
5	Grout around outer casing					
5.1	Material	N/A				
5.2	Ratio of solids to solids (if applicable) (pounds : pounds)					
5.3	Ratio of solids to water (pounds : gallons)					
5.4	Hydraulic conductivity (cm/s)					
6	Well casing					
6.1	Material	PVC				
6.2	Diameter (D3) (inches)	4				
6.3	Joint type	Threaded				
6.4	Length (L2) (feet)	10				
7	7 Grout around well casing (ignore if same as outer casing's grout)					
7.1	Material	Portland				
7.2	Ratio of solids to solids (if applicable) (pounds : pounds)	Neat Cement				
7.3	Ration of solids to water (pounds : gallons)	94 : 6				
7.4	Hydraulic conductivity (cm/s)					
8	Low permeability seal					
8.1	Material	Bentonite				
8.2	Length (L3) (feet)	2				
9	Filter pack					
9.1	Material	U.S. Silica No. 1 Sand equivalent				
9.2	Length (L4) (feet)	2				
10	Well screen					
10.1	Material	PVC				
10.2	Diameter (D4) (inches)	4				
10.3	Length (L5) (feet)	10				
10.4	Screen size opening (inches)	0.01				
11	Depth to bottom of well (L6) (feet)	20				
12	Well annulus (\geq 1.5 inches) (R1) (inches)	3				
13	Bottom borehole diameter (inches)	10.5				

WELL ID'S: **TBD - 3 wells in TPH Area** REGISTRATION NUMBER (S): **TBD** APPLICATION DATE: **TBD** PERMIT NUMBER: **TBD** WELL ADDRESS: **4615 14th Street NW** LOT & SQUARE: **0802 & 2811** WELL OWNER: James Ashe OWNER ADDRESS: James Ashe

4615 14TH Street NW

WASHINGTON, DC 20011

SIGNATURE: **TBD** DATE & TIME: **TBD**

MONITORING WELL SCHEMATIC (Flush Mount) Outer Casing Extended to Bedrock

District of Columbia Regulatory Review Division

Check one: Application 🛛 Change-In-Use 🗌

as-Built

1	Watertight cap?	\boxtimes
2	Curb box and concrete pad	
2.1	Concrete pad area (square feet)	4 (2'x2')
3	Borehole diameter (D1) (inches)	10.5
4	Outer casing (use if area is contaminated)	
4.1	Temporary or permanent?	N/A
4.2	Material	N/A
4.3	Diameter (D2) (inches)	
4.4	Length (L1) (feet)	
4.5	Depth to top of weathered rock (feet)	
4.6	Depth to top of competent bedrock (feet)	30
5	Grout around outer casing	
5.1	Material	N/A
5.2	Ratio of solids to solids (if applicable) (pounds : pounds)	
5.3	Ratio of solids to water (pounds : gallons)	
5.4	Hydraulic conductivity (cm/s)	
6	Well casing	
6.1	Material	PVC
6.2	Diameter (D3) (inches)	2
6.3	Joint type	Threaded
6.4	Length (L2) (feet)	20
7	Grout around well casing (ignore if same as outer casing's grout)	
7.1	Material	Portland
7.2	Ratio of solids to solids (if applicable) (pounds : pounds)	Neat Cement
7.3	Ration of solids to water (pounds : gallons)	94 : 6
7.4	Hydraulic conductivity (cm/s)	
8	Low permeability seal	
8.1	Material	Bentonite
8.2	Length (L3) (feet)	2
9	Filter pack	
9.1	Material	U.S. Silica No. 1 Sand equivalent)
9.2	Length (L4) (feet)	2
10	Well screen	
10.1	Material	PVC
10.2	Diameter (D4) (inches)	4
10.3	Length (L5) (feet)	10
10.4	Screen size opening (inches)	0.01
11	Depth to bottom of well (L6) (feet)	30
12	Well annulus (≥ 1.5 inches) (R1) (inches)	3
13	Bottom borehole diameter (inches)	10.5

WELL ID'S: TBD - 2 wells in CVOC Area REGISTRATION NUMBER (S): TBD APPLICATION DATE: TBD PERMIT NUMBER: TBD WELL ADDRESS: 4615 14th Street NW LOT & SQUARE: 0802 & 2811

WELL OWNER: James Ashe OWNER ADDRESS: James Ashe

4615 14TH Street NW

WASHINGTON, DC 20011

SIGNATURE: TBD DATE & TIME: TBD

MONITORING WELL SCHEMATIC (Flush Mount) Outer Casing Extended to Bedrock

District of Columbia Regulatory Review Division

Check one: Application 🛛 Change-In-Use 🗌

as-Built

1	Watertight cap?	\boxtimes	
2	Curb box and concrete pad		
2.1	Concrete pad area (square feet)	4 (2'x2')	
3	Borehole diameter (D1) (inches)	12	
4	Outer casing (use if area is contaminated)		
4.1	Temporary or permanent?	Permanent	
4.2	Material	Steel	
4.3	Diameter (D2) (inches)	8	
4.4	Length (L1) (feet)	40	
4.5	Depth to top of weathered rock (feet)		
4.6	Depth to top of competent bedrock (feet)	30	
5	Grout around outer casing		
5.1	Material	Portland	
5.2	Ratio of solids to solids (if applicable) (pounds : pounds)	Neat Cement	
5.3	Ratio of solids to water (pounds : gallons)	94 : 6	
5.4	Hydraulic conductivity (cm/s)		
6	Well casing		
6.1	Material	PVC	
6.2	Diameter (D3) (inches)	2	
6.3	Joint type	Threaded	
6.4	Length (L2) (feet)	45	
7	Grout around well casing (ignore if same as outer casing's grout)		
7.1	Material	same as outer	
7.2	Ratio of solids to solids (if applicable) (pounds : pounds)		
7.3	Ration of solids to water (pounds : gallons)		
7.4	Hydraulic conductivity (cm/s)		
8	Cow permeability seal		
8.1	Material	Bentonite	
8.2	Length (L3) (feet)	2	
9	Filter pack		
9.1	Material	U.S. Silica No. 1 Sand equivalent)	
9.2	Length (L4) (feet)	2	
10	Well screen		
10.1	Material	PVC	
10.2	Diameter (D4) (inches)	4	
10.3	Length (L5) (feet)	10	
10.4	Screen size opening (inches)	0.01	
11	Depth to bottom of well (L6) (feet)	55	
12	Well annulus (≥ 1.5 inches) (R1) (inches)	2	
13	Bottom borehole diameter (inches)	8	

WELL ID'S: TBD - 2 bedrock wells in CVOC Area REGISTRATION NUMBER (S): TBD APPLICATION DATE: TBD PERMIT NUMBER: TBD WELL ADDRESS: 4615 14th Street NW LOT & SQUARE: 0802 & 2811 WELL OWNER: James Ashe OWNER ADDRESS: James Ashe

4615 14TH Street NW

WASHINGTON, DC 20011

SIGNATURE: **TBD** DATE & TIME: **TBD** Arcadis U.S., Inc. 7550 Teague Road, Suite 210 Hanover Maryland 21076 Phone: 410 987 0032 Fax: 410 799 2533 www.arcadis.com